
- •1. Краткий исторический обзор развития экспериментальных методов обследования и испытания зданий и сооружений.
- •2. Основные определения, классификация освидетельствований и испытаний сооружений.
- •3. Требования к строительным конструкциям и сооружениям.
- •4. Цели и задачи обследования и испытания сооружений.
- •5. Условность расчетных схем и ее взаимосвязь с реальной конструкцией.
- •6. Условность расчетных характеристик строительных материалов.
- •7. Цели и задачи статических испытаний несущих конструкций зданий и сооружений.
- •8. Выбор элементов для статических испытаний.
- •9. Выбор схем загружения для статических испытаний.
- •10. Главнейшие схемы загружения конструкций.
- •11. Распределение нагрузок при испытании плит.
- •12. Распределение нагрузок при испытании однопролетной балки.
- •13. Распределение нагрузок при испытании колонны перекрытия.
- •14. Распределение нагрузок при испытании фермам.
- •15. Распределение нагрузок при испытании арок и сводов.
- •16. Испытание зданий особыми нагрузками.
- •17. Нагрузка и ее разновидности при статических испытаниях.
- •18. Режимы статических испытаний.
- •19. Проведение статических испытаний.
- •20. Обработка результатов статических испытаний.
- •21. Анализ результатов статических испытаний.
- •22. Основы метрологии и стандартизации в строительстве.
- •23. Определим основные понятия, связанные с поверкой средств измерений.
- •24. Погрешностями измерений.
- •25. Основные метрологические характеристики средств измерений.
- •26. Этапы обследования строительных конструкций.
- •27. Инструменты, приспособления и приборы для обследования строительных конструкций.
- •28. Определение прочности бетона и камня.
- •29. Оценка деформаций конструкций и прочности материалов.
- •30. Оценка прочности металла.
- •31. Определение фактических нагрузок.
- •32. Составление обмерочных чертежей.
- •33. Составление дефектных ведомостей и таблиц.
- •34. Действительные условия работы конструкций.
- •35. Поверочные расчеты конструкций.
- •36. Заключение о техническом состоянии объекта.
- •37. Причины аварий и повреждений при проектировании.
- •38. Причины аварий и повреждений при изготовлении и монтаже конструкций.
- •39. Причины аварий и повреждений при неправильной эксплуатации.
- •40. Деформации стальных конструкций от повышенных температур и огня.
- •41. Деформации арматуры в железобетонных и армированных каменных конструкциях от повышенных температур и огня.
- •42. Деформации деревянных конструкций от повышенных температур к огня.
- •43. Влияние отрицательных температур на основания зданий.
- •44. Влияние отрицательных температур на конструкции зданий.
- •45. Коррозионное разрушение металлических и неметаллических (бетонных, каменных, деревянных, пластмассовых и др.) конструкций.
- •46. Характерные дефекты эксплуатируемых каменных строительных конструкций.
- •47. Характерные дефекты эксплуатируемых железобетонных строительных конструкций.
- •48. Характерные дефекты эксплуатируемых предварительно напряженных, железобетонных строительных конструкций.
- •49. Характерные дефекты эксплуатируемых металлических конструкций.
- •50. Причины возникновения трещин в конструкциях.
- •51. Диагностика обследуемых конструкций.
- •52. Наиболее уязвимые места в зданиях и сооружениях.
- •53. Деформация зданий, находящихся вблизи вновь построенных и на склонах.
- •54. Диагностика оснований и фундаментов.
- •55. Диагностика стен здания.
- •56. Диагностика перекрытий.
- •57. Особенности обследования промзданий с мостовыми кранами.
- •58. Структура заключения о техническом состоянии конструкций здания.
- •59. Что такое тензорезистор?
- •60. Как определяется коэффициент тензочувствительности?
- •61. Как работает тензометрический мост?
- •62. Дня чего предназначен компенсационный тензорезистор?
- •64. На чем основана методика определения прочности бетона, кирпича, paствopa, камня эталонным молотком Кашкарова?
- •67. Какие факторы влияют на определение прочности бетона?(есть)
- •71. Какими способами может осуществляться загружение модели фермы при статических испытаниях?
- •72. Как экспериментально определяются внутренние усилия в стержнях фермы по измеренным в них деформациям?
28. Определение прочности бетона и камня.
Для определения прочности бетона используют простейшие приборы механического действия: молотки И.А. Физделя, К.П. Кашкарова и пружинные молотки.
На концах корпусов этих молотков расположены металлические шарики. При ударах молотком по поверхности бетона от шарика остаются лунки – вмятины диаметром dб, а на эталонном стержне – отпечаток диаметром dэт. Измеряют диаметры лунок штангенциркулем в двух взаимно перпендикулярных направлениях и принимают среднеарифметическое значение диаметров. Затем по диаметрам лунок (не менее 10 ударов в каждом сечении) по тарировочным графикам (зависимость прочности материала (предел прочности материала на сжатие) от диаметра отпечатка на поверхности бетона) определяют прочность материала. При работе с молотками К.П. Кашкарова находят отношение диаметров лунок на поверхности бетона (камня) и металлического стержня (эталонного), заведенного с обратной стороны шарика в наконечник корпуса молотка. Далее по тарировочным графикам (зависимость прочности материала от отношения диаметра отпечатка на поверхности бетона к диаметру отпечатка на эталоне) определяют прочность материала Кашкарова. Более точно определить прочность бетона и кирпичной кладки можно, если параллельно с этими испытаниями вырезаются образцы (бетонные кубики, кирпич и раствор) и испытываются на прессах.
Результаты испытаний и замеров статистически обрабатываются, получают математические ожидания, стандарты, дисперсии, коэффициент вариации и на их основе расчетные сопротивления материалов.
Более совершенным в настоящее время является прибор «Оникс— 1», используемый для определения прочности и однородности бетона на сжатие неразрушающим ударно-импульсным методом в соответствии с ГОСТ 22690-88 и ГОСТ 18105-86, а также для определения твердости поверхности различных материалов. Информацию снимают с 4-х разрядного жидкокристалического индикатора прибора, которая соответствует прочности и бетона или твердости материала. Принцип работы прибора заключается в фиксации амплитуды кратковременного электрического импульса, возникающего в чувствительном элементе при ударе о бетон, с дальнейшим преобразованием а цифровой десятичный код по уравнению:
R=a0+a1H, где R — прочность бетона на сжатие. МПа; H — амплитуда сигнала датчика, косвенная характеристика прибора при a0=0, а0=1, а0, а1 — коэффициенты преобразования.
Измерение выполняется в следующем порядке:
1) включение питания прибора;
2) взвод ударника датчика;
3) выбор места нанесения удара и прижатие датчика к поверхности;
4) нанесение удара по поверхности контролируемого объекта,
5) считывание информации с индикатора;
6) автоматический сброс информации при новом ударе и повторение.
Датчик необходимо установить строго по центру эталона с ориентацией в пространстве, соответствующей режиму испытания. Перед испытанием необходимо провести пробные испытания двух серий образцов — кубов близкого состава с нанесением по 5 ударов по двум противоположным сторонам каждого куба и вычислить средние значения Н для каждого куба и серии. Разность средней прочности двух серий должна быть не менее 10 %. Далее необходимо вычислить коэффициенты a0 и а1:
За единичное значение прочности бетона принимают среднюю прочность на участке конструкции, определяемую как среднее значение 10 измерений с одновременным определением коэффициента вариации.
Фактический класс прочности бетона на сжатие В находят по формуле:
В = Rm(1 - 0,0164 - V), (МПа).
По фактическому классу прочности бетона В определяют расчетные сопротивления по табл. 12 и 13 СНиП 2.03.01—84*[49] по линейной интерполяции для предельных состояний I и II группы.
Оценка прочности бетона склерометром. Приборы этого типа применяются главным образом за рубежом. Из их числа наиболее известен прибор Шмидта (Швейцария). В этих приборах о характеристиках материала судят по величине отскока стального бойка. Отскок фиксируется указателем на шкале. Удар наносится не непосредственно по исследуемой поверхности бетона, а воспринимается наконечником прибора, прижатого к конструкции. Этот промежуточный стальной элемент необходим, поскольку величина отскока при резкой разнице модулей упругости соударяемых материалов становится трудносопоставимой. Удар осуществляется спуском пружины, а не свободным падением бойка, что позволяет испытывать любым образом ориентированные поверхности. Прибор удобен в работе и дает довольно четкие результаты.
Ударники Шмидта применяются у нас почти исключительно в транспортном строительстве при освидетельствовании железобетонных мостов. Имеются несколько измененные конструкции прибора. Предложен также прибор, действующий по принципу отскока падающего стального маятника.
Способ стрельбы. Данный способ является своеобразным вариантом динамических оценок прочности материала. В 1933 г. Б.Г. Скрамтаевым была предложена оценка качества бетона по объему лунки, выбиваемой в нем револьверной пулей. Выстрел из "нагана" производится с расстояния 6-8 м от конструкции перпендикулярно ее поверхности с ограждением стреляющего от осколков и возможного рикошета. Объем образовавшихся лунок определяется измерением или, что более точно, по объему замазки, расходуемой на заполнение выбоин. Разброс получаемых результатов, однако, является значительным.
Дальнейшим развитием метода было предложенное несколько позднее Ф.Ф. Поляковым специально сконструированное ружье с подставкой, приставляемой к поверхности элемента. При выстреле в бетон входил стальной ударник, глубина погружения которого и служила показателем прочности материала. Способ стрельбы нашел практическое применение в испытаниях деревянных конструкций.
Оценка прочности бетона по отпечатку при статическом воздействии. Из числа предложений, основанных на статическом принципе, отметим, как наиболее характерное, устройство для вдавливания штампов, разработанное Г. К. Хайдуковым, А.И. Годером и Д.М. Рачевским. В зависимости от марки бетона берутся сферы радиусом 24, 14 и 10 см и гидравлическим домкратом создается усилие 2400, 2000 и 2200 кгс соответственно. Конец стального поршня домкрата, служащий штампом, обработан по сферической поверхности заданного диаметра. Для замера отпечатка на бетоне под поршнем укладывают по листу белой и копировальной бумаги. Для крепления всего устройства на исследуемом элементе и создания упора для домкрата имеются стальные захваты в виде массивных скоб.
Существенным преимуществом штампов большого диаметра является передача усилия более значительному объему материала, что позволяет судить о совместной работе всех компонентов бетона. Другие же из рассмотренных ранее приборов (с наконечниками небольших размеров) дают в основном представление о характеристиках затвердевшего раствора между крупными включениями.
К недостаткам установки следует отнести сравнительно большой ее вес, а также возникающие в отдельных случаях трудности закрепления, ограничивающие ее применение.