
- •1. Высокомолекулярные соединения: основные понятия и определения.
- •1. Первичные:
- •2. Вторичные:
- •2. Количественные характеристики длины полимерных молекул.
- •3. Свойства высокомолекулярных соединений, обусловленные цепным строением макромолекул.
- •Высокая вязкость растворов полимеров
- •4) Классификация вмс
- •5) Основные этапы развития полимерной науки и производства. Производство полимеров в Беларуси.
- •6) Структура полимерной цепи. Регулярные и нерегулярные полимеры. Уровни конфигурации макромолекулы.
- •7. Уровни иерархии конформации макромолекулы.
- •Сегмент макромолекулы. Определение понятия. Факторы, определяющие длину статистического сегмента. Методы определения длины статистического сегмента. Жесткоцепные и гибкоцепные вмс.
- •Агрегатные, фазовые и релаксационные состояния полимеров.
- •Релаксационные состояния аморфных вмс. Анализ термомеханической кривой аморфного линейного вмс.
- •13. Высокоэластическое состояние вмс.
- •14. Стеклообразное состояние вмс
- •15. Вязкотекучее состояние вмс
- •Радикальная сополимеризация. Уравнение состава сополимера. Схема Алфея-Прайса (q-e).
- •Кинетика радикальной полимеризации при малых степенях превращения.
- •Мономеры и элементарные реакции радикальной полимеризации.
- •1. Инициирование.
- •2. Рост цепи.
- •3. Обрыв цепи.
- •4. Реакции передачи цепи.
- •19)Цепные процессы образования вмс
- •20) Кинетика поликонденсации
- •21)Особенности синтеза полимеров методом поликонденсации.
- •1. Линейная поликонденсация
- •1 Поликонденсация в расплаве.
- •2 Поликонденсация в растворе.
- •3 Межфазная поликонденсация
- •Полимераналогичные превращения целлюлозы.
- •Реакционная способность мономеров и радикалов в радикальной полимеризации. Гель-эффект.
- •25. Классификация и гидродинамические свойства полиэлектролитов.
- •26. Деструкция и деполимеризация макромолекул. Принципы стабилизации высокомолекулярных соединений.
- •27.Прививочная сополимеризация
- •28. Классификация реакций сшивания макромолекул и особенности сшитых вмс.
- •29) Полимераналогичные превращения полиэтилена.
- •30).Классификация реакций вмс.
- •31) Надмолекулярные, конформационные и конфигурационные эффекты в реакциях вмс
- •32) Способы проведения полимеризации
- •33) Анионная полимеризация
- •34. Кинетика катионной полимеризации
- •35. Катионная полимеризация.
- •36. Необходимые и достаточные условия кристаллизации вмс. Основные структурные элементы Кристаллических вмс.
- •37. Способы ориентации и свойства ориентированных вмс.
- •38. Термодинамические понятия, используемые в теории растворов полимеров.
- •39. Особенности термодинамики полимерных растворов. Энергетика растворения полимеров. Набухание полимеров. Фазовые диаграммы систем полимер-растворитель.
- •40) Вязкость растворов полимеров. Определение молекулярной массы и среднеквадратичного расстояния между концами цепи методом вискозиметрии.
- •Характеристика и применение полимерных материалов: пластомеры, эластомеры, волокна, пленки, клеи.
- •1. Полиэтилен:
- •2 Изотактический полипропилен
- •3) Поливиниловый спирт
- •4) Метилметакрилат.
- •5 Фенолформальдегидные олигомеры
- •6 Полимеры и сополимеры акрилонитрила
- •7 Бутадиен
- •8 Полиизопрен
- •9 Хлоропрен
- •10 Полиэтилентерефталат (пэт)
- •11 Поликапролактам
- •12 Белки
- •13 Полиимиды
- •14 Полиуретан
- •15 Целлюлоза и ее производные
- •16 Полистирол
- •17 Полисилоксан
- •18 Поливинилхлорид
3) Поливиниловый спирт
Получение.
Алкоголиз сложных виниловых эфиров в среде осушенных низших алифатических спиртов (C1-C3), в частности метанола, в присутствии гидроксидов щелочных металлов. Процесс щелочного алкоголиза, сопровождается гелеобразованием.
Алкоголиз в присутствии кислот. Количество заявленных работ для этого способа намного меньше, чем для щелочного омыления. Процесс кислотного алкоголиза, так же как и в случае омыления ПВА по механизму реакции щелочного алкоголиза, сопровождается гелеобразованием.
Щелочной алкоголиза и гидролиза в смеси низших алифатических спиртов с другими растворителями (диоксан, вода, ацетон, бензин или сложные эфиры). При использовании смесей, компонентом которых является вода, практически во всех случаях ее концентрация не превышает 10 % и омыление сопровождается образованием геля.
Получения ПВС по механизму реакции гидролиза в присутствии кислотных или щелочных агентов, где в качестве реакционной среды выступает вода.
Разработка специального аппаратурного оформления, позволяющего решить технологические проблемы, связанные с гелеобразованием в процессе омыления ПВА.
Структура.
В связи с тем, что исходный полимер (поливинилацетат) для получения поливиниловго спирта получают реакцией полимеризации по типу «голова к хвосту», то и полученный ПВС имеет подобное строение. Общее число мономерных звеньев присоединенных по типу «голова к голове» находится на уровне 1-2 % и полностью зависит от их содержания в исходом поливинилацетате. Звенья присоединенные по типу «голова к голове» оказывают большое значение на физические свойства полимера, а также на его растворимость в воде. Как правило, ПВС является слаборазветвленным полимером. Разветвленность обусловлена реакцией передачи цепи на стадии получения поливинилацетата. Центры разветвленности являются наиболее слабыми местами полимерной цепи и именно по ним происходит разрыв цепи при реакции омыления и, как следствие, уменьшение молекулярной массы полимера. Степень полимеризации ПВС составляет 500—2500 и не совпадает с степенью полимеризации исходного ПВА.
Поливиниловый спирт, полученный из поливинилацетата, является тактическим полимером. Кристалличность ПВС обусловлена наличием большого числа гидроксильных групп в полимере. На кристалличность полимера оказывают так же влияние предыстория получения полимера, разветвленность, степень гидролиза и тип распределения остаточных ацетатных групп. Чем выше степень гидролиза, тем выше кристалличность образца ПВС. При термической обработке полностью омыленного продукта его кристалличность повышается и приводит к снижению его растворимости в воде. Чем выше число остаточных ацетатных групп в ПВС, тем меньше образование кристаллических зон.
Свойства.
Поливиниловый спирт является превосходным эмульгирующим, адгезионным и пленкообразующим полимером. Он обладает высокой прочностью на разрыв и гибкостью. Эти свойства зависят от влажности воздуха, так как полимер адсорбирует влагу. Вода действует на полимер как пластификатор. При большой влажности у ПВС уменьшается прочность на разрыв, но увеличивается эластичность. Температура плавления находится в области 230 °C (в среде азота), а температура стеклования 85 °C для полностью гидролизованной формы. На воздухе при 220 °C ПВС необратимо разлагается с выделением СO, CO2, уксусной кислоты и изменением цвета полимера с белого на темно-коричневый. Температура стеклования и температура плавления зависят от молекулярной массы полимера и его тактичности. Так, для синдиотактического ПВС температура плавления лежит в области 280 °C, а температура стеклования для сополимера ПВС-ПВА с содержанием звеньев ПВА 50-моль% находится ниже 20 °C.
Поливиниловый спирт стабилен в отношении масел, жиров и органических растворителей.
Поливиниловый спирт вступает в р-ции, характерные для многоатомных спиртов, напр. этерификации, ацеталирования. С иодом образует комплексы синего цвета (р-ция используется для обнаружения поливинилового спирта).
Применение.
Сгуститель и адгезионный материал в шампунях, клеях, латексах
Барьерный слой для СО2 в бутылках ПЭТФ (полиэтилентерефталат)
Составная часть продуктов гигиены для женщин и по уходу за детьми
Продукт для создания защитного слоя шихта в производстве искусственных волокон
В пищевой промышленности в качестве эмульгатора
Водорастворимые пленки в процессе изготовления упаковочных материалов
Иммобилизация клеток и энзимов в микробиологии
Производство поливинилбутиралей
В растворах для глазных капель и контактных линз в качестве лубриканта
В качестве сурфактанта для получения капсулированных наночастиц