
- •1. Высокомолекулярные соединения: основные понятия и определения.
- •1. Первичные:
- •2. Вторичные:
- •2. Количественные характеристики длины полимерных молекул.
- •3. Свойства высокомолекулярных соединений, обусловленные цепным строением макромолекул.
- •Высокая вязкость растворов полимеров
- •4) Классификация вмс
- •5) Основные этапы развития полимерной науки и производства. Производство полимеров в Беларуси.
- •6) Структура полимерной цепи. Регулярные и нерегулярные полимеры. Уровни конфигурации макромолекулы.
- •7. Уровни иерархии конформации макромолекулы.
- •Сегмент макромолекулы. Определение понятия. Факторы, определяющие длину статистического сегмента. Методы определения длины статистического сегмента. Жесткоцепные и гибкоцепные вмс.
- •Агрегатные, фазовые и релаксационные состояния полимеров.
- •Релаксационные состояния аморфных вмс. Анализ термомеханической кривой аморфного линейного вмс.
- •13. Высокоэластическое состояние вмс.
- •14. Стеклообразное состояние вмс
- •15. Вязкотекучее состояние вмс
- •Радикальная сополимеризация. Уравнение состава сополимера. Схема Алфея-Прайса (q-e).
- •Кинетика радикальной полимеризации при малых степенях превращения.
- •Мономеры и элементарные реакции радикальной полимеризации.
- •1. Инициирование.
- •2. Рост цепи.
- •3. Обрыв цепи.
- •4. Реакции передачи цепи.
- •19)Цепные процессы образования вмс
- •20) Кинетика поликонденсации
- •21)Особенности синтеза полимеров методом поликонденсации.
- •1. Линейная поликонденсация
- •1 Поликонденсация в расплаве.
- •2 Поликонденсация в растворе.
- •3 Межфазная поликонденсация
- •Полимераналогичные превращения целлюлозы.
- •Реакционная способность мономеров и радикалов в радикальной полимеризации. Гель-эффект.
- •25. Классификация и гидродинамические свойства полиэлектролитов.
- •26. Деструкция и деполимеризация макромолекул. Принципы стабилизации высокомолекулярных соединений.
- •27.Прививочная сополимеризация
- •28. Классификация реакций сшивания макромолекул и особенности сшитых вмс.
- •29) Полимераналогичные превращения полиэтилена.
- •30).Классификация реакций вмс.
- •31) Надмолекулярные, конформационные и конфигурационные эффекты в реакциях вмс
- •32) Способы проведения полимеризации
- •33) Анионная полимеризация
- •34. Кинетика катионной полимеризации
- •35. Катионная полимеризация.
- •36. Необходимые и достаточные условия кристаллизации вмс. Основные структурные элементы Кристаллических вмс.
- •37. Способы ориентации и свойства ориентированных вмс.
- •38. Термодинамические понятия, используемые в теории растворов полимеров.
- •39. Особенности термодинамики полимерных растворов. Энергетика растворения полимеров. Набухание полимеров. Фазовые диаграммы систем полимер-растворитель.
- •40) Вязкость растворов полимеров. Определение молекулярной массы и среднеквадратичного расстояния между концами цепи методом вискозиметрии.
- •Характеристика и применение полимерных материалов: пластомеры, эластомеры, волокна, пленки, клеи.
- •1. Полиэтилен:
- •2 Изотактический полипропилен
- •3) Поливиниловый спирт
- •4) Метилметакрилат.
- •5 Фенолформальдегидные олигомеры
- •6 Полимеры и сополимеры акрилонитрила
- •7 Бутадиен
- •8 Полиизопрен
- •9 Хлоропрен
- •10 Полиэтилентерефталат (пэт)
- •11 Поликапролактам
- •12 Белки
- •13 Полиимиды
- •14 Полиуретан
- •15 Целлюлоза и ее производные
- •16 Полистирол
- •17 Полисилоксан
- •18 Поливинилхлорид
31) Надмолекулярные, конформационные и конфигурационные эффекты в реакциях вмс
Конфигурационные эффекты
Эти эффекты проявляются в изменении:
Кинетики и механизма реакций полимеров с низкомолекулярными соединениями из-за различия в окружении данной функциональной группы или звена в начале и в конце реакции, которое влияет на ее реакционную способность – так называемый «эффект соседа»;
Направления и степени завершенности реакции вследствие наличия соседнего звена того или иного химического строения или пространственной конфигурации, которое создает стерические затруднения.
Пусть исходный полимер содержит некоторые функциональные группы А, способные превращаться в группы В в присутствии избытка низкомолекулярного реагента по схеме:
Поскольку природа ближайших соседей по цепи влияет на скорость превращения групп А в В, то в сополимере — промежуточном продукте реакции можно различить три типа звеньев А: звенья с двумя соседями А, т. е, звено А стоит в центре триады AAA (их концентрация N0), звенья с одним соседом А и одним соседом В, т. е. ААВ (их концентрация N1) и звенья с двумя соседями В, т. е. ВАВ (их концентрация N2). Константы скорости реакции превращения группы А в группы В для трех различных типов триад составляют соответственно ko, k1 и k2. Суммарная скорость реакции равна:
(1)
где NA = N0 + N1 + N2 — общая концентрация звеньев A; t — время.
Соотношение констант k0: k1: k2 существенным образом влияет как на кинетику процесса, так и на строение образующихся продуктов. При этом возможны три предельных случая.
Первый случай: k0=k1=k2 — «эффект соседа» отсутствует. При этом уравнение скорости реакции имеет обычную форму:
Реакция функциональной группы макромолекулы с низкомолекулярным соединением является бимолекулярной. Однако при избытке низкомолекулярного реагента изменением его концентрации можно пренебречь, и реакция будет иметь псевдопервый порядок, т. е.
Кинетическая кривая такой реакции спрямляется в полулогарифмических координатах (рис. 1, кривая1).
П
римером
реакции, протекающей без эффекта соседних
звеньев, может служить гидролиз
полидифенилметилметакрилата в кислой
и щелочной средах:
В
торой
случай:
k0≤k1≤k2
—
ускоряющий «эффект соседа». Общее
аналитическое решение кинетического
уравнения в этом случае невозможно.
Графическая зависимость концентрации
реагирующих групп от продолжительности
реакции в полулогарифмических
координатах показана па рис. 1 (кривая
2).
Примером
реакции, протекающей с ускорением, может
служить рассмотренный выше гидролиз
поли-n-нитрофенилметакрилата.
Распределение звеньев в продуктах реакций, протекающих с ускорением, носит блочный характер (~АААААВВВВААААА~), и при одной и той же средней степени превращения получающиеся продукты имеют более неоднородный состав, чем при отсутствии эффекта соседа.
Третий случай: k0≥k1≥k2 — замедляющий «эффект соседа». При этом скорость реакции описывается кривой 3 на рис. 1.
С замедлением протекают реакции щелочного гидролиза полиметилметакрилата:
полиметакриламида, хлорирования полиэтилена и т. д.
Прореагировавшие и непрореагировавшие звенья в образующихся макромолекулах при средних степенях конверсии имеют тенденцию к чередованию.
Знание кинетики макромолекулярных реакций и характера распределения звеньев в полимере имеет большое практическое значение. С одной стороны, определив константы скорости реакции и рассчитав по ним распределение звеньев, можно предсказать некоторые химические и физико-механические свойства полимерных продуктов реакции. С другой стороны, изменяя условия реакции, а вместе с ними и значения соответствующих кинетических констант, можно получать полимерные продукты, обладающие заданными свойствами.
Конформационные эффекты
Существует два типа конформационных эффектов.
Первый тип предполагает необходимость сближения функциональных групп данной макромолекулы, разделенных большим числом звеньев, для осуществления какой-либо реакции, так как вероятность протекания реакции зависит от вероятности реализации необходимой для этого конформации и от времени ее «жизни». Эффекты такого рода вызывают изменение скорости реакций в 104—106 и характерны для ферментативных процессов. Примером реакции, протекающей с конформационным эффектом, может служить гидролиз нитрофениловых эфиров под влиянием фермента —α-химотрипсина (XT):
XT—OH + RGCO—С6Н4—N02 —> XT—OCOR + HO—C6H4-N02
Скорость гидролиза под действием XT, имеющего исходную конформацию, в 106 раз больше, чем под действием денатурированного XT, в котором химическая последовательность звеньев та же, но конформация цепи иная.
Второй тип конформационных эффектов связан с изменением конформации макромолекулы в процессе химического превращения, поскольку при этом изменяются химический состав, энергия внутри- и межмолекулярного взаимодействия, потенциальные барьеры внутреннего вращения звеньев в полимерной цепи и т. д. Конформация макромолекулы, обеспечивающая доступность реагента ко всем звеньям в начале процесса, например, может не реализоваться на более поздних стадиях, что приведет к замедлению реакции. Возможны и обратные случаи, когда реакция ускоряется за счет разворачивания цепи в данной среде по ходу превращения. Так, гидролиз поливинилацетата протекает с ускорением в отличие от его низкомолекулярных аналогов — этилацетата и 1,3-диацетооксибутана:
По мере накопления гидроксильных групп в цепи скорость реакции возрастает и при степени превращения около 20% становится равной скорости гидролиза низкомолекулярных эфиров. Очевидно, при такой конверсии клубки настолько сильно развернуты, что все функциональные группы становятся равнодоступными для гидролизующего агента.
Надмолекулярные эффекты
При протекании реакций в твердой фазе, а также в случае возможной ассоциации и агрегации макромолекул в растворе в ходе реакции следует учитывать возникающие надмолекулярные эффекты. Наличие надмолекулярных образований приводит прежде всего к уменьшению скорости диффузии низкомолекулярного реагента к функциональным группам полимера. Примером влияния надмолекулярных образований на скорость реакции и степень превращения могут служить реакции функциональных групп целлюлозы, зависящие от характера предварительной обработки, «активации» целлюлозы. Так, гидрообработка способствует увеличению степени превращения при апеллировании целлюлозы, так как вода, вызывая набухание целлюлозы, повышает доступность гидроксильных групп. В то же время наличие надмолекулярных образований в растворе может привести к неоднородности продуктов реакции.