
- •1. Методы передачи информации в мпс: асинхронный, синхронный, асинхронно-синхронный. Общая характеристика, сравнение.
- •2. Асинхронные методы передачи информации. Временные диаграммы.
- •3. Синхронные методы передачи информации. Временные диаграммы.
- •4. Асинхронно-синхронный методы передачи информации. Временные диаграммы.
- •5. Основные принципы организации микропроцессорных систем. Синхронизация, шины, понятие о пдп, прерываниях.
- •6. Архитектура фон Неймана и архитектуры современных мпс.
- •7. Основные циклы работы процессора на любом примере: чтения, записи.
- •8. Методы ввода-вывода: опрос, прерывание, пдп. Общая характеристика.
- •9. Пдп, методы пдп.
- •17. Особенности разработки по в системах с прерываниями.
- •20. Динамическая память. Принципы организации, режимы работы.
- •10. Стандартный контроллер пдп и его включение в мпс.
- •11. Организация пдп в ibm pc. Принципы работы.
- •12. Прерывания. Организация прерываний в микропроцессорах. Векторные прерывания.
- •18. Микросхемы памяти. Общая классификация.
- •19. Синхронные и асинхронные зу. Временные диаграммы.
- •13. Стандартный контроллер прерываний, его включение в мпс.
- •14. Организация прерывания в ibm pc. Принципы работы.
- •15. Реализация прерываний по уровню и по фронту. Сравнительная характеристика.
- •16. Прохождение прерывания от клавиатуры в ibm pc.
- •25. Принципы работы динамической памяти в ibm pc: sdram, ddr sdram. Временные диаграммы.
- •26. Организация памяти в мпс. Классификация, общая характеристика.
- •27. Методы повышения быстродействия одноуровневой динамической памяти.
- •28. Организация шин в мпс: общая шина, разделенная шина, смешанный ввод-вывод, смешанная структура шин. Общая характеристика.
- •29. Общая шина. Цикл чтения.
- •30. Общая шина. Цикл записи.
- •31. Общая шина. Цикл прерывания.
- •32. Основные характеристики pci.
- •33. Pci. Цикл чтения.
- •34. Pci. Цикл записи.
- •35. Периферийные устройства: Таймеры, порты, ацп, цап.
- •36. Микроконтроллеры и мпк бис. Общая характеристика, области применения.
- •37. Принципы цифровой обработки сигналов. Основные задачи в обработке сигналов.
- •38. Основные принципы организации dsp.
- •Методы передачи информации в мпс: асинхронный, синхронный, асинхронно-синхронный. Общая характеристика, сравнение.
- •42. Шина usb
- •44. Интерфейс rs-232.
- •Чтение памяти (0110) и запись в память (0111)
- •Чтение конфигурации (1010) и запись конфигурационных данных (1011)
- •Множественное чтение памяти (1100)
- •Спецификации scsi
- •Другие карты scsi
- •Характеристики scsi
- •Параметры конфигурирования scsi устройств
- •Хост-адаптер
- •Scsi устройства
- •Контроллеры
- •47. Шина ieee-1394
- •Технические характеристики:
- •2. Характеристики задатчиков на шине
- •2.1. Центральный процессор
- •2.2. Контроллер пдп
- •3.3. Структура прерываний
- •3.4. Перестановщик байтов
7. Основные циклы работы процессора на любом примере: чтения, записи.
Как известно, процессор является основным вычислительным блоком компьютера, в наибольшей степени определяющим его мощь. Процессор является устройством, исполняющим программу - последовательность команд (инструкций), задуманную программистом и оформленную в виде модуля программного кода.
Шина данных состоит из 16 линий, по которым возможна передача как отдельных байтов, так и двухбайтовых слов. При пересылке байтов возможна передача отдельно как по старшим 8 линиям, так и по младшим. Шина данных двунаправленна, т.к. передача байтов и слов может производиться как в микропроцессор, так и из него. Шина управления формируется сигналами, во-первых, поступающими непосредственно от микропроцессора, во-вторых, сигналами, сформированными системным контроллером, и, в-третьих, сигналами, идущими к микропроцессору от других микросхем и периферийных адаптеров. Микропроцессор использует системный контроллер для формирования управляющих сигналов, определяющих правила переноса данных по шине. Он выставляет три сигнала S0, S1, M/IO (выводы 5, 4 и 65), которые определяют тип цикла шины (подтверждение прерывания, чтение порта ввода/вывода, запись в порт ввода/вывода, останов, чтение памяти, запись в память). На основании значений этих сигналов системный контроллер формирует управляющие сигналы, определяющие последовательность процессов данного типа цикла шины.
Для того чтобы понять динамику работы шины, разберем, каким образом процессор осуществляет чтение слова из оперативной памяти. Это происходит в течение четырех тактов CLK (тактовых импульсов на входе 31 микропроцессора), или двух внутренних состояний процессора (т.е. каждое состояние процессора длится 2 такта синхросигнала CLK). Во время первого состояния, обозначаемого как Ts, процессор выставляет на адресную шину значение адреса, по которому будет читаться слово. Кроме того, он формирует на шине совместно с шинным контроллером соответствующие значения управляющих сигналов. Эти сигналы и адрес обрабатываются схемой управления памятью, в результате чего, начиная с середины второго состояния процессора Ts (т.е. в начале четвертого такта CLK) на шине данных появляется значение содержимого соответствующего слова из оперативной памяти. И, наконец, процессор считывает значение этого слова с шины данных. На этом перенос (копирование) значения слова из памяти в процессор заканчивается.
8. Методы ввода-вывода: опрос, прерывание, пдп. Общая характеристика.
Подсистема ввода/вывода (ПВВ) обеспечивает связь МП с внешними устройствами, к которым будем относить:
- устройства ввода/вывода (УВВ): клавиатура, дисплей, принтер, датчики и исполнительные механизмы, АЦП, ЦАП, таймеры и т.п.
- внешние запоминающие устройства (ВЗУ): накопители на магнитных дисках, "электронные диски" и др.
ПВВ в общем случае должна обеспечивать выполнение следующих функций:
1) согласование форматов данных, т.к. процессор всегда выдает/принимает данные в параллельной форме, а некоторые ВУ (например, НМД) - в последовательной. С этой точки зрения различают устройства параллельного и последовательного обмена. В рамках параллельного обмена не производится преобразование форматов передаваемых слов, в то время как при последовательном обмене осуществляется преобразования параллельного кода в последовательный и наоборот. Все варианты, когда длина слова ВУ (больше 1 бита) не совпадает с длиной слова МП, сводятся к разновидностям параллельного обмена;
2) организация режима обмена - формирование и прием управляющих сигналов, идентифицирующих наличие информации на различных шинах, ее тип, состояние ВУ (Готово, Занято, Авария), регламентирующих временные параметры обмена. По способу связи процессора и ВУ (активного и пассивного) различают синхронный и асинхронный обмен. При синхронном обмене временные характеристики обмена полностью определяются МП, который не анализирует готовность ВУ к обмену и фактическое время завершения обмена. Синхронный обмен возможен только с устройствами, всегда готовыми к нему (например, двоичная индикация). При асинхронном обмене МП анализирует состояние ВУ и/или момент завершения обмена. Временные характеристики обмена в этом случае могут определяться ВУ;
3) адресную селекцию внешнего устройства.
Классификация методов ввода/вывода
- Под управлением ЦП: По опросу; По прерыванию.
- Под управлением внешних устройств (прямого доступа к памяти).
Метод по опросу подразумевает регулярную проверку процессором готовности к ответу.
Недостатки: быстродействие очень низкое; процессор занимается постоянным опросом.
Достоинства: не требует дополнительной аппаратуры; можно использовать несколько источников.
Необходимо чтобы процессор и устройства были согласованны по скорости. Эффективность низка если информация поступает редко (процессор опрашивает а информации нет).