
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 4.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 6.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 5.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 6.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. . В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 5.
- •3. В урне 10 шаров, из них 6 – окрашенные. Найти вероятность того, что ровно 2 из 3-х вынутых наудачу шаров окрашены.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 4.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 6.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 5.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 6.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. . В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 5.
- •3. В урне 10 шаров, из них 6 – окрашенные. Найти вероятность того, что ровно 2 из 3-х вынутых наудачу шаров окрашены.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 4.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 6.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 5.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •2. В круг радиуса 10 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 6.
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
- •7. Независимые дискретные величины X и y заданы законами распределения:
7. Независимые дискретные величины X и y заданы законами распределения:
-
X
-4
-3
1
2
Y
-4
2
p
0,1
0,1
0,6
0,2
p
0,4
0,6
Найти математическое ожидание, дисперсию и среднее квадратическое отклонение для случайной величины Z=3X-2Y. Найти и построить функцию распределения дискретной случайной величины Х.
8. Вероятность того, что событие A появится в одном из пяти независимых испытаниях, равна 0,3. Составить ряд распределения случайной величины Х-числа появлений события А. Определить вероятность того, что среди 5 испытаний событие появится: а) ровно два раза; б) более двух раз; в) не более двух раз. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х.
9. Случайная величина X задана функцией распределения вероятностей F(x). Найти: а) плотность распределения вероятностей случайной величины X, б) вероятность попадания случайной величины в интервал (0,2;0,9); в) математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X:
Построить графики функции и плотности распределения случайной величины Х.
10. Пусть вес пойманной рыбы подчиняется нормальному закону с параметрами a=375г и σ=25г. Найдите вероятность того, что вес пойманной рыбы будет от 300 до 425г.
Вариант №30
1. Имеется 4 машины. Вероятность того, что машина работает в произвольный момент времени t, равна 0,9. Найти вероятность того, что в момент t работает: а) не более двух машин; б) две машины; в) хотя бы одна машина.
2. В круг радиуса 6 случайным образом брошена точка так, что ее любое расположение в круге равновозможно. Найти вероятность того, что она окажется внутри лежащего в круге квадрата со стороной 4.
3. В урне 12 шаров, из них 6 – окрашенные. Найти вероятность того, что ровно 2 из 3-х вынутых наудачу шаров окрашены.
4. Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы курса 4, из второй-6, из третьей-5 студентов. Вероятность того, что студент первой, второй, третьей группы попадёт в сборную института, соответственно равны 0,9; 0,7 и 0,8. Наудачу выбирается студент одной из групп.
А) Какова вероятность того, что он попадет в сборную?
В) В итоге соревнования студент попал в сборную. Найти вероятность того, что он принадлежал первой группе.
5. Вероятность появления события в каждом из 625 независимых испытаний равна 0,36. Найти вероятность того, что в этих испытаниях интересующее событие наступит ровно 370 раз?
6. Рабочий за смену изготавливает 625 деталей. Вероятность того, что деталь окажется первого сорта, равна 0,64. Какова вероятность того, что деталей первого сорта будет от 225 до 255 штук?