- •1. Что является объектом и предметом статистики? Каковы ее задачи?
- •2. Какие методы применяются в статистике?
- •3. Каковы этапы статистического исследования?
- •4. Каковы задачи и этапы проведения статистического наблюдения?
- •5. Какие существуют организационные формы, виды и способы статистического наблюдения?
- •6. Назовите виды статистических сводок и группировок и их место в системе статистических методов.
- •7. Какие существуют классификации статистических группировок?
- •8. Назовите существующие виды статистических таблиц и правила их построения.
- •9. Какие существуют виды статистических графиков и диаграмм.
- •10. Какие существуют виды статистических показателей, в каких формах они выражаются?
- •11. Каковы сущность и значение относительных показатели структуры, координации, динамики?
- •12. Каковы сущность и значение относительных показателей напряженности и выполнения плана, сравнения, интенсивности?
- •13. Как производятся расчеты средних: арифметической и гармонической, простых и взвешенных?
- •14. Как рассчитываются простые и взвешенные средние: геометрическая и квадратическая?
- •15. Как определяются размах вариации, среднее линейное отклонение?
- •16. Какие существуют методы расчета дисперсия, среднего квадратического отклонения, коэффициент вариации?
- •17. Назовите структурные показатели вариационного ряда, показатели дифференциации.
- •18. Какими методами определяются абсолютные относительные, базисные и цепные уровни изменения ряда динамики?
- •19. Как исчисляются коэффициенты (индексы) роста, темпы роста, темпы прироста, абсолютное значение одного процента прироста?
- •20. Порядок расчетов среднего абсолютного прироста, среднего коэффициента роста и среднего темпа прироста?
- •21. Дайте определение, что такое индекс и приведите классификацию индексов.
- •22. Как определяется индексы: цен, физического объема, товарооборота?
- •23. Как рассчитываются индексы: средней цены переменного состава, средней цены постоянного состава, структурных сдвигов.
- •24. Назовите важнейшие экономические индексы и их взаимосвязи.
- •25. Причинность, регрессия, корреляция. Основные задачи и предпосылки применения корреляционно-регрессионного анализа.
- •2 Типа взаимосвязей между х и у:
- •26. Корреляционные параметрические методы изучения связи.
- •27. Коэффициент парной корреляции. Оценка его значимости.
- •28. Парная регрессия на основе метода наименьших квадратов и метода группировки.
- •29. Оценка существенности связи. Прогнозирование на основе регрессионных моделей.
- •30. Коэффициенты ассоциации и контингенции.
- •31. Коэффициенты взаимной сопряженности.
- •32. Ранговые коэффициенты корреляции.
- •33. Общие принципы исчисления показателей продукции. Классификация производства.
- •34. Какие основные элементы составляют продукцию промышленности?
- •35. Назовите основные показатели промышленной продукции.
- •36. В каких случаях применяются натуральные показатели?
- •37. Как определяются численность и состав работников?
- •38. Движение рабочей силы и его показатели.
- •39. Какой существует порядок определения рабочего времени и показатели его использования.
- •40. Назовите формы и системы оплаты труда.
- •41. Каков состав фонда заработной платы?
- •42. Какие существуют показатели уровня и динамики заработной платы? Порядок их расчета.
- •43. Какие существуют виды и показатели прибыли?
- •44. Что означает показатель рентабельности и какие показатели рентабельности Вы знаете?
- •45. Какая взаимосвязь имеется между показателями рентабельности и оборачиваемости средств?
16. Какие существуют методы расчета дисперсия, среднего квадратического отклонения, коэффициент вариации?
Стр. 25-30, Коэффициент вариации используют для сравнения рассеивания двух и более признаков, имеющих различные единицы измерения. Коэффициент вариации представляет собой относительную меру рассеивания, выраженную в процентах. Он вычисляется по формуле:
,ь
где
-
искомый показател,
-
среднее квадратичное отклонение,
-
средняя величина.
17. Назовите структурные показатели вариационного ряда, показатели дифференциации.
Основные структурные показатели вариационного ряда, мода; медиана; квартили; децили.
Стр. 16-20
Проведение
вариационного анализа начинается с
построения вариационного ряда –
упорядоченное распределение единиц
совокупности по возрастающим или по
убывающим признакам и подсчет
соответствующих частот. Ряды
распределения: 1. Ранжированный
вариационный ряд –
перечень отдельных ед. совокупности в
порядке возрастания убывания ранжированного
признака; 2. Дискретный
вариационный ряд – таблица,
состоящая из 2х строк
– полимерных значений варьирующего
признака и кол-во единиц с
данным значением признака. 3. Интервальный
вариационный ряд строится
в случаях: *признак принимает дискретные
значения, но кол-во их слишком велико;
*признака принимает любые значения в
определенном диапазоне. При построении
интервального вариационного ряда
необходимо выбрать оптимальное количество
групп, самый распространенный способ
по формуле Стерджесса
k=1+3.32lgn,
где k –
количество интервалов; n –
объем совокупности. При расчетах почти
всегда получают дробные значения,
округления производить до целого
числа. Длина
интервала – l
18. Какими методами определяются абсолютные относительные, базисные и цепные уровни изменения ряда динамики?
Базисное среднее абсолютное изменение представляет собой частное от деления последнего базисного абсолютного изменения на количество изменений.
Цепное среднее абсолютное изменение уровней ряда представляет собой частное от деления суммы всех цепных абсолютных изменений на количество изменений.
Базисное относительное изменение представляет собой соотношение конкретного и первого уровней ряда, а цепное относительное изменение представляет собой соотношение конкретного и предыдущего уровней ряда.
Задачи, возникающие при изучении динамических рядов:
1) характеристика интенсивности отдельных изменений в уровнях рода от периода к периоду или от даты к дате;
2) определение средних показателей временного ряда за тот или иной период;
3) выявление основных закономерностей динамики исследуемого явления на отдельных этапах и в целом за рассматриваемый период;
4) выявление факторов, обусловливающих изменение изучаемого объекта во времени;
5) прогноз развития явления на будущее.
Эти задачи решаются с помощью показателей изменения уровней ряда динамики.
Способы сопоставления уровней ряда:
1) каждый уровень динамического ряда сравнивается с одним и тем же предшествующим уровнем, где базисный уровень - начальный уровень динамического ряда или уровень, с которого начинается какой-то новый этап развития - это сравнение с постоянной базой. Полученные при этом показатели называются базисными;
2) каждый уровень динамического ряда сравнивается с непосредственно ему предшествующим - это сравнение с переменной базой. Полученные при этом показатели называются цепными.
Показатели динамики с постоянной базой (базисные показатели) - это показатели окончательного результата всех изменений в уровнях ряда от периода, к которому относится базисный уровень, до назначенного (/-того) периода.
Показатели динамики с переменной базой (цепные показатели) - это показатели интенсивности изменения уровня от периода к периоду (или от даты к дате) в пределах изучаемого промежутка времени.
Абсолютный
прирост (
i)
– это разность между двумя уровнями
динамического ряда, которая показывает,
насколько данный уровень ряда превышает
уровень, принятый за базу сравнения.
Формула расчета абсолютного прироста:
где i - абсолютный прирост;
yi- уровень сравниваемого периода;
y0 - уровень базисного периода.
Формула расчета абсолютного прироста при сравнении с переменной базой:
где
-
уровень предшествующего периода.
Если уровень уменьшился по сравнению с базисным, то <0. В этом случае абсолютный прирост характеризует абсолютное уменьшение (сокращение) уровня.
Абсолютная скорость роста (снижения) уровня - абсолютный прирост за единицу времени с переменной базой.
Абсолютное ускорение - разность между абсолютным приростом за данный период и абсолютным приростом за предыдущий период одинаковой длительности:
Абсолютное ускорение может быть:
1) положительное число;
2) отрицательное число.
Абсолютное ускорение показывает, насколько увеличилась (уменьшилась) скорость изменения показателя. Показатель ускорения применяется для цепных абсолютных приростов. Отрицательная величина ускорения говорит о замедлении роста или об ускорении снижения уровней ряда.
Абсолютные приросты для любых рядов динамики являются интервальными показателями, т. е. характеризуют тот или иной промежуток (интервал) времени.
