
- •Бетоны: общие сведения и классификация по различным признакам. Значение бетона в индустриальном строительстве. Основные компоненты бетонной смеси, их краткая характеристика, требования.
- •Свойства бетонной смеси(удобоукладываемость, связность и др.). Влияние на свойства бетонной смеси различных факторов
- •Способы уплотнения бетонной смеси. Твердение и уход за бетоном(в т.Ч. Зимнее бетонирование). Ускорители твердения бетонной смеси и их практическое значение.
- •Структура и прочность бетона. Зависимость прочности бетона от различных факторов( времени, температуры, влажности). Формулы и графики. Понятие класса бетона по прочности
- •Принцип подбора состава тяжелых бетонов. Основные формулы
- •Контроль качества бетона (пооперационный и выходной)
- •Бетоны с использованием полимерных материалов. Виды, свойства, применение. Высокопрочные и высококачественные бетоны
- •Легкие бетоны на пористых заполнителях: свойства, применение. Виды пористых заполнителей. Крупнопористый бетон. Значение легких бетонов в строительстве
- •Получение, свойства и применение ячеистых бетонов. Пено- и газообразователи. Технико-экономические преимущества использования ячеистых бетонов
- •Понятие о железобетоне, как о композиционном материале; его преимущества и недостатки. Предварительно напряженный бетон
- •Сборное, монолитное и сборно-монолитное строительство; преимущества и недостатки. Номенклатура сборных железобетонных конструкций
- •Способы производства и основные технологические операции при производстве сборного железобетона
- •Кладочные и монтажные растворы. Основные требования, предъявляемые к ним. Принципы расчета состава кладочных растворов
- •Отделочные растворы. Состав, свойства. Специальные строительные растворы (акустические, инъекционные, гидроизоляционные, для полов и др.)
- •Сухие растворные смеси. Состав, особенности применения
- •Силикатные материалы и изделия. Общие сведения. Понятие об автоклавной технологии и физико-химических процессах, происходящих при твердении известково-кремнеземистых смесей
- •Силикатные бетоны. Свойства, применение
- •Асбестоцемент. Общие сведения, состав, преимущества и недостатки. Основы технологии производства асбестоцемента. Утилизация отходов производства. Применение альтернативных материалов
- •Основные виды асбестоцементных изделий (листы профилированные, плиты облицовочные, плитки кровельные, трубы и др.). Свойства, применение
- •Гипсовые и гипсобетонные изделия. Состав, свойства, применение
- •Материалы и изделия на магнезиальных вяжущих. Состав, свойства, применение
- •Общие сведения о древесных материалах и изделиях. Указать положительные и отрицательные свойства древесины как строительного материала. Основные древесные породы, применяемые в строительстве
- •Макро- и микростроение древесины
- •Свойства древесины. Влажность древесины и ее влияние на свойства
- •Основные пороки древесины
- •Защита древесины от гниения, от возгорания и поражения насекомыми
- •Сортамент лесных материалов (понятие о сорте, круглые лесоматериалы, полуфабрикаты и заготовки, фанера, пиломатериалы, кровельные, столярные, плитные)
- •Деревянные клееные конструкции. Комплексное использование древесины и отходов деревообработки в строительстве
- •Общие сведения и свойства органических вяжущих веществ (битумы, дегти)
- •Битумы, их разновидности. Групповой состав и его влияние на свойства битумов. Сущность процессов старения органических вяжущих
- •Свойства и маркировка битумов
- •Дегти: получение, свойства
- •Кровельные, гидроизоляционные и герметизирующие материалы на основе органических вяжущих (битумных, битумно-полимерных, дегтевых). Состав, свойства, маркировка и применение
- •Асфальтовые растворы и бетоны. Виды, состав, свойства, маркировка и применение
- •Перспективные виды материалов для строительства дорог (щебеночно-мастичный асфальтобетон, гэс, огв)
- •Битумные эмульсии. Виды эмульгаторов. Образование эмульсий. Состав, свойства, маркировка и применение
- •Мастики и пасты на основе битумных вяжущих. Состав, свойства, маркировка и применение
- •Пластмассы в строительстве. Общие сведения, сырье для получения полимеров
- •Классификация полимеров (с примерами). Полимеры полимеризационные и поликонденсационные, применение материалов на их основе в строительстве
- •Состав полимерных материалов. Виды и краткая характеристика составляющих
- •Свойства пластмасс и методы их получения
- •Конструкционные и конструкционно-отделочные, отделочные материалы для стен на основе пластмасс. Технико-экономические преимущества использования их в строительстве
- •Теплоизоляционные пластмассы
- •Модификация строительных материалов полимерами (виды материалов, получение, свойства)
- •Теплоизоляционные материалы. Определение, значение в строительстве. Классификация теплоизоляционных материалов
- •Основные способы получения высокопористой структуры. Технологические схемы получения волокнистых материалов
- •Перспективные виды теплоизоляции
- •Теплоизоляционные материалы на основе органического сырья (фибролит, пенопласты, торфоплиты и др.). Состав, свойства, применение
- •Теплоизоляционные материалы на основе минерального сырья (ячеистое стекло, диатомитовый кирпич, вспученный перлит и др.). Получение, состав, свойства, применение
- •Акустические материалы: общие сведения, виды шума
- •Звукопоглощающие материалы: виды, свойства, особенности применения
- •Звукоизоляционные материалы: виды, свойства, особенности применения
- •Отделочные материалы: классификация (с примерами). Особенности применения
- •Перспективы развития новых отделочных материалов (декоративные штукатурки, покрытия с каменной крошкой, жидкие обои и др.)
- •Лакокрасочные материалы. Общие сведения и классификация (с примером маркировки)
- •Виды связующих для красочных составов
- •Пигменты для красочных составов, их основные свойства. Наполнители для красочных составов
- •Вспомогательные компоненты красочных составов (растворители, разбавители, грунтовки и др.).Назначение, виды, особенности применения
- •Красочные составы (масляные, лаки, эмали, вододисперсионные и др.)
- •Красочные составы (на основе полимеров, клеевые, на основе неорганических вяжущих)
Получение, свойства и применение ячеистых бетонов. Пено- и газообразователи. Технико-экономические преимущества использования ячеистых бетонов
Ячеистые бетоны являются разновидностью легкого бетона, его получают в результате затвердевания вспученной при помощи порообразователя смеси вяжущего, кремнеземистого компонента и воды. При вспучивании исходной смеси образуется характерная «ячеистая» структура бетона с равномерно распределенными по объему воздушными порами. Благодаря этому ячеистый бетон имеет небольшую плотность и малую теплопроводность.
Пористость ячеистого бетона сравнительно легко регулировать в процессе изготовления, в результате получают бетоны разной плотности и назначения.
Ячеистые бетоны делят на три группы: теплоизоляционные плотностью в высушенном состоянии не более 500 кг/м3; конструкционно-теплоизоляционные (для ограждающих конструкций) плотностью 500-900 кг/м3; конструкционные (для железобетона) плотностью 900-1200 кг/м3.
Материалы для ячеистого бетона.
Вяжущим для цементных ячеистых бетонов обычно служит портландцемент.
Бесцементные ячеистые бетоны (газо- и пеносиликат) автоклавного твердения изготовляют, применяя молотую негашеную известь.
Вяжущее применяют совместно с кремнеземистым компонентом, содержащим двуоксид кремния. Кремнеземистый компонент (молотый кварцевый песок, зола-унос ТЭС и молотый гранулированный доменный шлак) уменьшают расход вяжущего, усадку бетона и повышают качество ячеистого бетона. Кварцевый песок обычно размалывают мокрым способом и применяют в виде песчаного шлама. Измельчение увеличивает удельную поверхность кремнеземистого компонента и повышает его химическую активность.
Возрастает применение побочных продуктов промышленности (зола-уноса, доменных шлаков, нефелинового шлама) для изготовления ячеистого бетона.
Вспучившие теста вяжущего может осуществляться двумя способами: химическим, когда в тесто вяжущего вводят газообразующую добавку и в смеси происходят химические реакции, сопровождающиеся выделением газа; механическим, заключающимся в том, что тесто вяжущего смешивают с отдельно приготовленной устойчивой пеной.
В зависимости от способа изготовления ячеистые бетоны делят на газобетон и пенобетон. У нас и за рубежом развивается производство преимущественно газобетона. Его технология более проста и позволяет получить материал пониженной плотности со стабильными свойствами. Пена же не отличается стабильностью, что вызывает колебания плотности и прочности пенобетона.
Газобетон и газосиликат.
Газобетон приготовляют из смеси портландцемента (часто с добавкой воздушной извести или едкого натра), кремнеземистого компонента и газообразователя.
По типу химических реакций газообразователи делят на следующие виды: вступающие в химические взаимодействие с вяжущим или продуктами его гидратации (алюминиевая пудра); разлагающиеся с выделением газа (пергидроль); взаимодействующие между собой и выделяющие газ в результате обменных реакций (например, молотый известняк и соляная кислота).
Чаще всего газообразователем служит алюминиевая пудра, которая, реагируя с гидратом окиси кальция, выделяет водород.
Литьевая технология предусматривает отливку изделий, как Правило, в отдельных формах из текучих смесей, содержащих до 50-60% воды от массы сухих компонентов (водотвердое отношение В/Т = 0,5-0,6). При изготовлении газобетона применяемые материалы - вяжущее, песчаный шлам и вода, дозируют и подают в самоходный газобетоносмеситель, в котором их перемешивают 4-5 мин; затем в приготовленную смесь вливают водную суспензию алюминиевой пудры и после последующего перемешивания теста с алюминиевой пудрой газобетонную смесь заливают в металлические формы на определенную высоту с таким расчетом, чтобы после вспучивания формы были заполнены доверху. Избыток смеси («горбушку») после схватывания срезают проволочными струнами. Для ускорения газообразования, а также процессов схватывания и твердения применяют «горячие» смеси на подогретой воде с температурой в момент заливки в формы около 40°С.
Тепловую обработку бетона производят преимущественно в автоклавах в среде насыщенного водяного пара при температуре 175-200°С и давлении 0,8-1,3 МПа.
Вибрационная технология газобетона заключается в том, что во время перемешивания в смесителе и вспучивания в форме смесь подвергается вибрации. В смеси, подвергающейся вибрированию, ускоряется газовыделение - вспучивание заканчивается в течение 5-7 мин вместо 15-20 мин при литьевой технологии. После прекращения вибрирования газобетонная смесь быстро (через 0,5-1,5 ч) приобретает структурную прочность, позволяющую разрезать изделие на блоки, время автоклавной обработки также сокращается.
Резательная технология изготовления изделий из ячеистого бетона предусматривает формование вначале большого массива (объемом 10-12 м3, высотой до 2 м). После того как бетон наберет структурную прочность, массив разрезают в горизонтальном и вертикальном направлениях на прямоугольные элементы, а затем подвергают тепловой обработке. Полученные элементы калибруют на специальной фрезерной машине, а затем отделывают их фасадные поверхности. Из готовых элементов, имеющих точные размеры собирают на клею плоские или объемные конструкции, используя стяжную арматуру. Таким путем получают большие стеновые панели размером на одну или две комнаты и высотой на этаж.
Газосиликат автоклавного твердения в отличие от газобетона изготовляют на основе известково-кремнеземистого вяжущего, используя местные дешевые материалы - воздушную известь и песок, золу-унос и металлургические шлаки.
Изделия из газосиликата приобретают нужную прочность и морозостойкость только после автоклавной обработки, обеспечивающей химическое взаимодействие между известью и кремнеземистым компонентом и образование нерастворимых в воде гидросиликатов кальция.
Пенобетон и пеносиликат.
Пенобетон приготовляют, смешивая раздельно приготовленные растворную смесь и пену, образующую воздушные ячейки. Растворную смесь получают из вяжущего (цемента или воздушной извести) кремнеземистого компонента и воды, как и в технологии газобетона.
Пену приготовляют в лопастных пеновзбивателях или центробежных насосах из водного раствора пенообразователей, содержащих поверхностно-активные вещества. Применяют клееканифольный, смолосапоииновый, алюмосульфо-нафтеновый и синтетические пенообразователи. Стабилизаторами пены служат добавки раствора животного клея, жидкого стекла или сернокислого железа; минерализаторами же являются цемент и известь.
Пеносиликат, как и газосиликат, изготовляют на основе известково-кремнеземистого вяжущего.
Свойства ячеистого бетона.
Прочность и плотность являются главными показателями качества ячеистого бетона. Плотность, колеблющаяся от 300 до 1200 кг/м3, косвенно характеризует пористость ячеистого бетона (соответственно 85-60%).
Установлены следующие марки ячеистых бетонов по прочности при сжатии: М15, М25, М35, М50, М75, М100, М150. Классы по прочности на сжатие находятся в пределах ВО,35...В12,5.
Водопоглощение и морозостойкость зависят от величины и характера пористости ячеистого бетона и плотности перегородок между макропорами (ячейками). Для снижения водопоглощения и повышения морозостойкости стремятся к созданию ячеистой структуры с замкнутыми порами. Этому способствует вибрационная технология, так как при вибрации газобетонной смеси разрушаются крупные ячейки, снижающие морозостойкость и однородность материала.
Установлены следующие марки ячеистого бетона по морозостойкости: F15, F25, F35, F50, F75, F100. Для панелей наружных стен применяют ячеистый бетон марок F15, F25 в зависимости от влажности атмосферы в помещениях и климатических условий. Более высокая морозостойкость требуется от конструкционного ячеистого бетона, подвергающегося многократному замораживанию и оттаиванию.
Теплопроводность ячеистого бетона зависит от плотности и влажности, например при плотности 600 кг/м3, теплопроводность в сухом состоянии 0,14Вт/(м•°С), при влажности 8%-0,22 Вт/(м•°С).
Усадка зависит от состава ячеистого бетона, плотности и условий твердения. Ячеистый бетон плотностью 700-800 кг/м3 в воздухе с 70-80%-ной относительной влажностью и температурой 20°С имеет усадку 0,4-0,6 мм/м.
Применяют ячеистые бетоны для легких железобетонных конструкций и теплоизоляции. Широко распространены конструкционно-теплоизоляционные ячеистые бетоны. Из них изготовляют панели наружных стен и покрытий зданий, неармированные стеновые и теплоизоляционные блоки, камни для стен.
Конструкции из ячеистых бетонов долговечны в зданиях с сухим и нормальным режимами помещений при относительной влажности воздуха 60-70%.
Широкий спектр применения
Данный материал может быть использован для стяжки в качестве тепло-, звукоизоляции полов, крыш и кровель зданий, теплоизоляции трубопроводов, в том числе и как конструкционный для возведения стен и межэтажных перекрытий этажностью до 3-х этажей, а так же в теплых складах, холодильниках, коровниках, свинарниках, восстановление фасадов и т.д. Технология позволяет загерметезировать все стыки перекрытий и устройства полов, крыш, кровель и чердаков зданий, что позволит значительно снизить теплопотери, подготовить поверхность пола под укладку линолеума и других покрытий и получить теплые полы, кровли.
Особое значение применение ячеистого бетона неавтоклавного монолитного растущего водостойкого имеет при восстановлении фасадов зданий, в связи с высоким износом и недолговечностью штукатурных материалов. Стойкость фасадов с применением ячеистого бетона неавтоклавного монолитного растущего водостойкого возрастает в несколько раз. Восстановленные фасады, кроме приобретаемых тепло-звуко-изоляционных свойств могут приобретать и красивый внешний вид. Применяя ячеистый бетон неавтоклавный растущий водостойкий на кровле, позволяет увеличить долговечность и качество покрытия, срок службы которой увеличивается особенно с применением специальных присадок и может достигать 200 циклов. Саморастущий эффект раствора материала приводит к герметизации даже мелких изъянов основы кровли. Теплотехнические свойства ячеистого бетона удовлетворяют требованиям СНиПов 2-го этапа.
Экономические выгоды ячеистого бетона
Применение технологии позволяет снизить стоимость коробки коттеджа в несколько раз за счет :
уменьшение расходов на отделочные работы, т.к. стены получаются ровные и гладкие сразу под покраску или обои,
применение механизмов малой механизации, в основном ручной труд,
значительное уменьшение номенклатуры применяемых строительных материалов,
Технология позволяет применять в строительстве самые сложные и криволинейные архитектурные решения, что может разнообразить архитектурные формы городского и сельского строительства. В настоящее время износ производственных корпусов предприятий и жилых зданий достиг критической величины и применяя монолитную технологию ячеистого бетона, т.к. он имеет ярко выраженный растущий эффект, можно с наименьшими затратами укрепить панели корпусов производственных зданий и фасады и продлить срок их службы.
Предоставляем технологию, нестандартное оборудование и сухую порообразующую смесь, а так же проводим обучение специалистов по производству ячеистого бетона неавтоклавного монолитного водостойкого растущего.
Производительность оборудования СК-1.0 объемом 1м3 - до 24м3/смену.
Габаритные размеры СК-1,0: 2,4х0,75х1,5, Вес 75 кг.
Оборудование производится объемом: от 0,1; 0,2; 0,25; 0,5; 1,0; 2,0 м3.
Продукция сертифицирована.
Преимущества использования ячеистого бетона
преимущества:
пожарная безопасность,
герметичность полов, кровли,
экологическая чистота,
теплые полы, кровли,
высокая скорость производства черновых полов, кровли,
низкая себестоимость 1м2,
звукоизоляция,
долговечность полов, кровли 25-30 лет.