
- •Бетоны: общие сведения и классификация по различным признакам. Значение бетона в индустриальном строительстве. Основные компоненты бетонной смеси, их краткая характеристика, требования.
- •Свойства бетонной смеси(удобоукладываемость, связность и др.). Влияние на свойства бетонной смеси различных факторов
- •Способы уплотнения бетонной смеси. Твердение и уход за бетоном(в т.Ч. Зимнее бетонирование). Ускорители твердения бетонной смеси и их практическое значение.
- •Структура и прочность бетона. Зависимость прочности бетона от различных факторов( времени, температуры, влажности). Формулы и графики. Понятие класса бетона по прочности
- •Принцип подбора состава тяжелых бетонов. Основные формулы
- •Контроль качества бетона (пооперационный и выходной)
- •Бетоны с использованием полимерных материалов. Виды, свойства, применение. Высокопрочные и высококачественные бетоны
- •Легкие бетоны на пористых заполнителях: свойства, применение. Виды пористых заполнителей. Крупнопористый бетон. Значение легких бетонов в строительстве
- •Получение, свойства и применение ячеистых бетонов. Пено- и газообразователи. Технико-экономические преимущества использования ячеистых бетонов
- •Понятие о железобетоне, как о композиционном материале; его преимущества и недостатки. Предварительно напряженный бетон
- •Сборное, монолитное и сборно-монолитное строительство; преимущества и недостатки. Номенклатура сборных железобетонных конструкций
- •Способы производства и основные технологические операции при производстве сборного железобетона
- •Кладочные и монтажные растворы. Основные требования, предъявляемые к ним. Принципы расчета состава кладочных растворов
- •Отделочные растворы. Состав, свойства. Специальные строительные растворы (акустические, инъекционные, гидроизоляционные, для полов и др.)
- •Сухие растворные смеси. Состав, особенности применения
- •Силикатные материалы и изделия. Общие сведения. Понятие об автоклавной технологии и физико-химических процессах, происходящих при твердении известково-кремнеземистых смесей
- •Силикатные бетоны. Свойства, применение
- •Асбестоцемент. Общие сведения, состав, преимущества и недостатки. Основы технологии производства асбестоцемента. Утилизация отходов производства. Применение альтернативных материалов
- •Основные виды асбестоцементных изделий (листы профилированные, плиты облицовочные, плитки кровельные, трубы и др.). Свойства, применение
- •Гипсовые и гипсобетонные изделия. Состав, свойства, применение
- •Материалы и изделия на магнезиальных вяжущих. Состав, свойства, применение
- •Общие сведения о древесных материалах и изделиях. Указать положительные и отрицательные свойства древесины как строительного материала. Основные древесные породы, применяемые в строительстве
- •Макро- и микростроение древесины
- •Свойства древесины. Влажность древесины и ее влияние на свойства
- •Основные пороки древесины
- •Защита древесины от гниения, от возгорания и поражения насекомыми
- •Сортамент лесных материалов (понятие о сорте, круглые лесоматериалы, полуфабрикаты и заготовки, фанера, пиломатериалы, кровельные, столярные, плитные)
- •Деревянные клееные конструкции. Комплексное использование древесины и отходов деревообработки в строительстве
- •Общие сведения и свойства органических вяжущих веществ (битумы, дегти)
- •Битумы, их разновидности. Групповой состав и его влияние на свойства битумов. Сущность процессов старения органических вяжущих
- •Свойства и маркировка битумов
- •Дегти: получение, свойства
- •Кровельные, гидроизоляционные и герметизирующие материалы на основе органических вяжущих (битумных, битумно-полимерных, дегтевых). Состав, свойства, маркировка и применение
- •Асфальтовые растворы и бетоны. Виды, состав, свойства, маркировка и применение
- •Перспективные виды материалов для строительства дорог (щебеночно-мастичный асфальтобетон, гэс, огв)
- •Битумные эмульсии. Виды эмульгаторов. Образование эмульсий. Состав, свойства, маркировка и применение
- •Мастики и пасты на основе битумных вяжущих. Состав, свойства, маркировка и применение
- •Пластмассы в строительстве. Общие сведения, сырье для получения полимеров
- •Классификация полимеров (с примерами). Полимеры полимеризационные и поликонденсационные, применение материалов на их основе в строительстве
- •Состав полимерных материалов. Виды и краткая характеристика составляющих
- •Свойства пластмасс и методы их получения
- •Конструкционные и конструкционно-отделочные, отделочные материалы для стен на основе пластмасс. Технико-экономические преимущества использования их в строительстве
- •Теплоизоляционные пластмассы
- •Модификация строительных материалов полимерами (виды материалов, получение, свойства)
- •Теплоизоляционные материалы. Определение, значение в строительстве. Классификация теплоизоляционных материалов
- •Основные способы получения высокопористой структуры. Технологические схемы получения волокнистых материалов
- •Перспективные виды теплоизоляции
- •Теплоизоляционные материалы на основе органического сырья (фибролит, пенопласты, торфоплиты и др.). Состав, свойства, применение
- •Теплоизоляционные материалы на основе минерального сырья (ячеистое стекло, диатомитовый кирпич, вспученный перлит и др.). Получение, состав, свойства, применение
- •Акустические материалы: общие сведения, виды шума
- •Звукопоглощающие материалы: виды, свойства, особенности применения
- •Звукоизоляционные материалы: виды, свойства, особенности применения
- •Отделочные материалы: классификация (с примерами). Особенности применения
- •Перспективы развития новых отделочных материалов (декоративные штукатурки, покрытия с каменной крошкой, жидкие обои и др.)
- •Лакокрасочные материалы. Общие сведения и классификация (с примером маркировки)
- •Виды связующих для красочных составов
- •Пигменты для красочных составов, их основные свойства. Наполнители для красочных составов
- •Вспомогательные компоненты красочных составов (растворители, разбавители, грунтовки и др.).Назначение, виды, особенности применения
- •Красочные составы (масляные, лаки, эмали, вододисперсионные и др.)
- •Красочные составы (на основе полимеров, клеевые, на основе неорганических вяжущих)
Пластмассы в строительстве. Общие сведения, сырье для получения полимеров
Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.
Классификация полимеров (с примерами). Полимеры полимеризационные и поликонденсационные, применение материалов на их основе в строительстве
По происхождению полимеры делят на:
1) природные, биополимеры (полисахариды, белки, нуклеиновые кислоты, каучук, гуттаперча);
2) искусственные - полученные из природных путём химических превращений (целлулоид, ацетатное, медноаммиачное, вискозное волокно);
3) синтетические - полученные из мономеров (синтетические каучуки, волокна/капрон, лавсан, пластмассы).
По составу полимеры бывают:
1) органические (их большинство);
2) элементоорганические (поликарбонаты, кремнийорганические);
3) неорганические (некоторые простые вещества: полимерные олово, селен, теллур, аморфная сера, черный фосфор, карбин, поликумулен, полифосфазены, сульфаны - линейные, кварц, корунд, алюмосиликаты - сетчатые).
По структуре макромолекулы:
1) линейные (высокоэластичные);
2) разветвленные;
3) сетчатые (низкоэластичные).
По химическому составу:
1) гомополимеры (содержат одинаковые мономерные звенья);
2) гетерополимеры или сополимеры (содержат разные мономерные звенья).
По составу главной цепи:
1) гомоцепные (в главную цепь входят атомы одного элемента);
2) гетероцепные (в главную цепь входят разные атомы).
По пространственному строению
1) стереорегулярные - макромолекулы построены из звеньев одинаковой пространственной конфигурации, или из звеньев разной пространственной конфигурации, но чередующихся в цепи с определенной периодичностью;
2) нестереорегулярные (атактические) - с произвольным чередованием звеньев разной пространственной конфигурации.
По физическим свойствам:
1) кристаллические (имеют длинные стереорегулярные макромолекулы);
2) аморфные: высокоэластическое, вязкотекучее, стеклообразное состояние.
Если полимер переходит из высокоэластичного состояния в стеклообразное при температурах, ниже комнатной, его относят к эластомерам, при более высоких температурах - к пластикам.
Полимеры, которые обратимо твердеют и размягчаются называют термопластичными; если при нагревании полимер утрачивает способность переходить в вязкотекучее состояние из-за образования сетчатой структуры, он называется термореактивным.
Для характеристики полимера используют: степень полимеризации, строение мономерного звена, молекулярную массу. А также указываются другие особенности его строения, физических свойств.
По способу получения полимеры бывают:
1) полимеризационные;
2) поликонденсационные.
Полимеризационные полимеры получают методом полимеризации. При этой реакции происходит объединение молекул одного и того же вещества в одну большую молекулу высокомолекулярного вещества - полимера без выделения побочных продуктов. При этом вещество приобретает новые свойства, сохраняя прежний химический состав. Так получают полиэтилен, поливинилхлорид, полиизобутилен, полистирол, полиакри-латы и некоторые другие полимеры, нашедшие широкое применение в технологии строительных материалов.
Поликонденсационные полимеры получают в процессе реакции поликонденсации двух или нескольких низкомолекулярных веществ. В этом случае наряду с основным продуктом поликонденсации - полимером образуются побочные соединения (вода, спирты, хлористый водород и др.). Масса получаемого полимера меньше массы исходных веществ, а его химический состав отличается от химического состава исходных продуктов. В отличие от полимеризации поликонденсация происходит только между веществами, содержащими функциональные группы. Методом поликонденсации получают полиэфирные, фенолоальдегид-ные, эпоксидные, кремнийорганические и другие полимеры.