
- •Глава 1. Електричні сигнали як носії інформації …………………………………….….12
- •Глава 2. Характеристики та параметри радіоелектронних кіл ……………………….....26
- •Глава 3. Елементна база радіоелектроніки ……………………………………...………..48
- •Глава 4. Фільтри електричних сигналів ….……………………………………………….99
- •Глава 5. Підсилювачі електричних сигналив …………………………………...………115
- •Глава 6. Перетворювачі електричних сигналів ………………………………...……….139
- •Глава 7. Генератори електричних коливань ………………………………...…………..159
- •Глава 8. Системи радіозв’язку I радіомовлення ……………………………………...…187
- •Глава 1. Електричні сигнали як носії інформації
- •1.1. Сигнали та їхні параметри.
- •1.2. Сигнали повідомлення
- •1.3. Дискретизація аналогових сигналів повідомлення
- •1.4. Багатоканальна передача інформації
- •Глава 2.Характеристики та параметри
- •2.1. Деталі й елементи радіоелектронних кіл
- •2.2. Схеми радіоелектронних пристроїв
- •2.3. Аналіз властивостей радіоелектронних кіл
- •2.4. Характеристики та параметри навантаженого
- •2.5. Вимірювання основних параметрів чотириполюсників
- •2.6. З'єднання чотириполюсників
- •2.7. Зворотні зв'язки в радіоелектронних колах
- •Глава 3. Елементна база радіоелектроніки
- •3.1. Пояснення електропровідності речовини на підставі зонної
- •3.2. Дискретні радіодеталі, побудовані на основі провідникових і
- •3.3. Електричні властивості напівпровідників. Напівпровідникові
- •3.4. Електронно-дірковий перехід і його властивості. Напівпровідникові діоди
- •3.5. Транзистори
- •3.6. Електровакуумні прилади
- •3.7. Напівпровідникові й електровакуумні прилади як активні
- •3.8. Забезпечення режиму роботи за постійним струмом
- •3.9. Напівпровідникові інтегральні мікросхеми
- •3.10. Основні поняття про функціональну
- •3.11. Електронно-променеві прилади
- •Глава 4. Фільтри електричних сигналів
- •4.1. Типи електричних фільтрів
- •4.2. Властивості найпростіших rс-елементів
- •4.3. Вибірні властивості коливального контуру
- •Глава 5.Підсилювач електричних сигналів
- •5.1. Загальна структура і типи підсилювачів
- •5.2. Аналіз властивостей аперіодичного підсилювального
- •5.3. Зворотні зв'язки в підсилювачах
- •5.4. Резонансні підсилювачі
- •5.5. Підсилювачі потужності
- •5.6. Підсилювачі постійного струму й операційні підсилювачі
- •Глава 6. Перетворювачі електричних сигналів
- •6.1. Загальна структура і типи перетворювачів сигналів
- •6.2. Модуляція і схеми модуляторів
- •6.3. Демодуляція і схеми детекторів
- •6.4. Перетворення і множення частоти
- •6.5. Логічні перетворення цифрових сигналів і базові логічні елементи
- •Глава 7. Генератори електричних коливань
- •7.1. Загальна структура і типи генераторів
- •7.2. Автогенератори з коливальним контуром
- •7.3. Автогенератори гармонічних коливань на аперіодичних
- •7.4. Генератори релаксаційних коливань
- •7.5. Тригери
- •Глава 8. Системи радіозв'язку і радіомовлення
- •8.1. Загальна структура каналу радіозв'язку і діапазони
- •8.2. Антени
- •8.3. Основні технічні показники і структурні схеми
- •8.4. Основні експлуатаційні параметри і структурні схеми
- •8.5. Особливості побудови деяких елементів радіоприймачів
- •Глава 9. Системи телебачення
- •9.1. Принципи телебачення
- •9.2. Структурні схеми монохромних телевізорів
- •9.3. Структурна схема кольорового телевізора
- •Глава 1 0. Радіолокаційні системи
- •10.1. Принципи радіолокації
- •10.2. Радіолокація неперервним сигналом
- •10.3. Радіолокація імпульсним сигналом
- •10.4. Конструктивні особливості окремих елементів рлс
- •Глава 11 . Системи електронної обчислювальної техніки
- •11.1. Способи технічної реалізації алгоритмів
- •11.2. Апаратні засоби еом
- •11.3. Комп’ютерні мережі
- •11.4. Основні типи комп’ютерів
- •11.5. Основні операційні елементи обчислювальної техніки
- •Глава 1 2. Радіоелектроніка в загальноосвітній школi
- •12.1. Питания радіоелектроніки в курсі фізики I спецкурсах
- •12.2. Радіоелектроніка у кабінеті фізики I засобах навчання
- •12.3. Радіоелектроніка в позакласній роботі
- •12.4. Елементи радіоелектроніки в технічній творчості школярів
- •Список використаної та рекомендованої літератури
3.6. Електровакуумні прилади
Найпростіший електровакуумний прилад — діод (рис. 3.22, а) має вигляд балона, тиск повітря в якому не перевищує 10–7…10–8 мм. рт. ст., де знаходяться два основних електроди: розжарюваний катод К й анод А. Розжарення катода забезпечується пропусканням по ньому електричного струму (катод прямого, безпосереднього розжарення) або за допомогою окремої спіралі розжарення (катод із непрямим, посереднім розжаренням). Завдяки термоелектронній емісії навколо катода утворюється електронна хмарка. Залежно від напрямку електричного поля між анодом і катодом електрони з цієї хмарки можуть або прискорюватись у напрямку анода й утворювати анодний струм (коли анод приєднано до позитивного полюса джерела живлення), або, навпаки, гальмуватися і відкидатися у напрямку катода, тобто діод має ідеальну однобічну провідність.
Введення третього електрода — сітки С (рис. 3. 22, б), розташованої поблизу катода, дає змогу керувати відносно великим струмом без витрат потужності, тому що на сітку подається негативний відносно катода потенціал. Близькість розташування сітки до катода робить значно помітнішим вплив зміни сіткової напруги на зміну анодного струму, ніж вплив зміни
анодної напруги. В цьому і полягає підсилювальна властивість триелектродної лампи, що дістала назву тріода.
Основними параметрами тріода, які визначають в околі РТ за його ВАХ,є
статичний коефіцієнт підсилення
;
(3.21)
крутість анодно-сіткової характеристики
;
(3.22)
внутрішній опір
.
(3.23)
Ці параметри пов'язані між собою основним рівнянням електронної лампи
.
(3.24)
Тріод має багато недоліків, тому під час еволюції електронних ламп, спрямованої на поліпшення їхніх параметрів і характеристик, з'явилися спочатку тетроди (лампи з другою — екранувальною сіткою), а потім променеві тетроди та пентоди (лампи з третьою — антидинатронною сіткою) (рис. 3.22, в).
Рис. 3.22. Умовні графічні позначення і вихідні ВАХ найпростіших електровакуумних
приладів: діода (а), тріода (б), променевого тетрода і пентода (в)
На екранувальну сітку подають позитивну відносно катода напругу приблизно того самого значення, що й анодна напруга. Внаслідок цього електричне поле, яке прискорює електрони, що пройшли крізь керувальну сітку, практично не залежить від напруги на аноді. Наслідком цього є значне збільшення Ri та μ і різке зменшення ємності між керувальною сіткою й анодом, що має суттєве значення при використанні лампи на високих частотах.
Однак недоліком тетрода є наявність вторинної електронної емісії з поверхні анода. Потік вторинних електронів з анода в тих випадках, коли потенціал екранувальної сітки вищий за потенціал анода, спричинює перерозподіл струмів й зумовлює провал в анодних характеристиках. Це явище дістало назву динатронного ефекту. Для його усунення будують тетроди спеціальної конструкції. В них потік електронів формують у вигляді променів.
Найпоширенішим способом боротьби з динатронним ефектом є введення між екранувальною сіткою й анодом третьої, антидинатронної сітки, що з'єднується з катодом і своїм негативним потенціалом перешкоджає виходу вторинних електронів з анода. При коефіцієнті підсилення до 300 пентоди можна застосовувати на частотах до сотень мегагерців.
У побутовій радіоелектроніці й апаратурі широкого призначення електровакуумні прилади майже не використовують. Однак висока стабільність характеристик і деякі інші якості зумовлюють застосування їх у професіональній апаратурі, радіовимірювальних і окремих спеціальних радіоелектронних пристроях.