Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
материалка.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
904.19 Кб
Скачать

31.Превращения в стали при нагреве.

Если эвтектоидную сталь, содержащую 0,8% углерода и имеющую структуру перлит нагреть выше Аc1 (7270С), то перлит превратится в аустенит с тем же содержанием углерода (0,8%).

Если доэвтектоидную сталь, содержащую, например, 0,4% углерода и имеющую структуру феррит + перлит, нагреть выше Аc1, то перлит превратится в аустенит. Феррит никаких изменений не претерпевает. Аустенит содержит 0,8% углерода, а феррит - 0,02% (точка P). По мере повышения температуры в интервале Аc1-Аc3, феррит будет растворятся в аустените и как бы "разбавлять" его по углероду и в момент достижения температуры Аc3 аустенит будет содержать 0,4% углерода, то есть столько, сколько углерода в стали.

Если заэвтектоидную сталь, содержащую, например, 1% углерода и имеющую структуру перлит + цементит, нагреть выше Аc1, то перлит превратится в аустенит с содержанием 0,8% углерода. Цементит никаких изменений не претерпевает и содержит 6,67% углерода. Дальнейший нагрев в интервале Аc1-Аc3 приводит к тому, что цементит будет растворятся в аустените и дополнительно насыщать аустенит углеродом. В момент достижения температуры Аcm аустенит будет содержать 1% углерода, то есть то количество углерода, которое в стали.

Рост зерна аустенита при нагреве.

В момент превращения перлита в аустенит образуется большое количество мелких зерен аустенита. При дальнейшем повышении температуры зерно аустенита начинает расти. Это обусловлено стремлением системы к уменьшению свободной энергии.

Различают наследственно мелкозернистые и наследственно крупнозернистые стали. Под наследственной зернистостью понимают склонность аустенитного зерна к росту, отсюда мелкозернистые стали обладают меньшей склонностью аустенитного зерна к росту в отличие от крупнозернистых сталей. Однако при достижении температур 900-950 0 С барьеры, предшествующие росту зерна в наследственно мелкозернистых сталях устраняются, и происходит более интенсивный рост зерна по сравнению с крупнозернистыми сталями. При превращении перлита в аустенит выделяют начальное зерно – размер зерна в момент превращения П в А. Наследственное зерно – склонность аустенитного зерна к росту. И действительное зерно – размер зерна, полученный при конкретных условиях. На свойства стали оказывает влияние момент действительного зерна. С увеличением размера зерна характеристики прочности, и особенно ударная вязкость снижается, а увеличиваются магнитные и электрические свойства и наоборот.

32. Превращения в стали при охлаждении. Диаграмма изотермического превращения переохлажденного аустенита.

(распад аустенита)

сущность заключается в том, что при переходе через линию Аr1 образуется почти чистое железо и цементит.

выделение угрерода из аустенита – процесс диффузионный и представляет собой процесс зарождения центров Ц и их последующего роста. Образование цементитных пластинок способствует образованию ферритной пластинки, т.к. соседние области обедняются углеродом. В результате из одного аустенитного зерна образуются несколько ферритных колоний, следовательно, размеры зерен уменьшаются.

Превращение аустенита в перлит можно изобразить в виде кинетической кривой превращения:

а-начало превращения, оа-инкубационный период 1-1,5%, в-конец превращения, ∆Т-const для строго определенной степени переохлаждения. Если взять различные степени переохлаждения и определить для каждой из них точки а и в то получим так называемые С-образные кривые превращения. (а1,в1 – для одной степени переохлаждения,а2,в2 – для другой). Различные степени переохлаждения получаются в зависимости от скорости переохлаждения, следовательно, получаются различные структуры распада. При скорости охлаждения 1-2град в мин.степень переохлаждения составляет 10-15град., такая скорость обеспечивается при охлаждении вместе с печью. При этом распад А происходит при t=700град., полученная структура называется пластинчатым перлитом, а обработка – отжигом. Сталь со структурой перлита имеет хорошую пластичность и низкую твердость. HB=180-200. Охлаждение со скоростью 1 град/сек дает степень переохлаждения 100-150град. Такую скорость обеспечивает охлаждение на воздухе. В результате получается более мелкий (дисперсный) перлит, называемый сорбитом. Твердость сорбита более высокая (НВ=250-280), такая термообработка называется нормализацией.

Охлаждение со скоростью 100-150 град/с обеспечивает степень переохлаждения 250-300град. в результате получаеца очень дисперсный перлит, называемый трооститом. (НВ=400-450). Такая ТО называется одинарной. При охлаждении можно достичь таких скоростей, когда превращения аустенита не происходит, т.е. А распадается на Ф и Ц. скорость охлаждения, когда кривая охлаждения касается С-образной кривой называется критической скоростью, в этом случае превращения А в П не происходит. Такая скорость обеспечивается при охлаждении в воде, степень переохлаждения больше 200град, а скорость охлаждения 300-500 град/сек. При этой степени переохлаждения скорость диффузии углерода в А очень мала, но ГЦК неустойчива и начинаются полиморфные превращения А без выделения углерода. При этом начинается бездиффузионное превращение аустенита в новую фазу – мартенсит.

А0,8%(ГЦК)→М0,8%(ОЦК)

Т.к. превращение бездиффузионное, углерод не успевает выделиться, возникают внутренние напряжения, повышается твердость. Особенности перехода А в М: 1. не сопровождается изменением состава, бездиффузионный. 2. кристалл.решетка обр-ся мартенсита закономерно ориетированна к крист.решетке аустенита. 3.решетка тетрагональная. 4. кристаллы М имеют пластинчатую форму и образуются почти мгновенно.

33

  Природа мартенсита. Мартенсит является упорядоченным перенасыщенным твердым раствором внедрения углерода в  - железе. Если в равновесном состоянии растворимость углерода в железе при 200С не превышает 0,02% , то его содержание в мартенсите может быть таким же, как в исходном аустените (до 2,14 %).         Механизм мартенситного превращения. Мартенситное превращение может происходит только в том случае, если быстрым охлаждение аустенит переохлажден до низких температур, при котором диффузионные процессы становятся не возможными. Превращение носит бездиффузионный характер, т. е. оно не сопровождается диффузионным перераспределением атомов углерода и железа в решетке аустенита.         Мартенситное превращение осуществляется путем сдвига и не сопровождается изменением состава твердого раствора. Отдельные атомы смещаются относительно друга на расстояние, не превышающие межатомные, сохраняя взаимное соседство. Но смещение увеличивается по удалению от межфазной границы, что и приводит к изменению рельефа. Пока существует когерентность между аустенитом и мартенситом, скорость образование роста мартенсита очень велика (103 м/с). При нарушении когерентности решеток дальнейший упорядоченный переход атомов аустенита в мартенсит невозможным, и рост кристалла мартенсита прекращается.