- •1. Области применения жбк
- •2. Бетон как материал для изготовления жбк
- •3. Арматура как материал для изготовления жбк
- •4. Сущность жбк. Достоинства и недостатки
- •5. Три стадии напряженно деформационного состояния при изгибе
- •6. Методы расчета конструкций по предельным состояниям
- •7. Нагрузки и воздействия
- •8. Расчет прочности по нормальному сечению центрально растянутых элементов
- •9. Расчет прочности по нормальному сечению изгибаемых элементов прямоугольного профиля с одиночной арматурой
- •10. Расчет прочности по нормальному сечению изгибаемых элементов прямоугольного профиля с двойной арматурой
- •11. Расчет прочности по нормальному сечению изгибаемых элементов таврового профиля (граница сжатой зоны проходит в полке)
- •12. Расчет прочности по нормальному сечению изгибаемых элементов таврового профиля (граница сжатой зоны проходит в ребре)
- •13. Расчет прочности по наклонному сечению изгибаемых элементов
- •14. Расчет условно центрально сжатых элементов
- •15. Расчет внецентренно сжатых элементов в случае малых эксцентриситетов
- •16. Расчет внецентренно сжатых элементов в случае больших эксцентриситетов
- •17. Сжатые элементы, усиленные косвенным армированием
- •18. Расчет прочности по нормальному сечению внецентренно растянутых элементов
- •19. Методы и способы создания предварительного напряжения в жбк. Потери предварительного напряжения
- •20. Усилие обжатия в предварительно напряженных элементах. Напряженно деформированные состояния
- •21. Расчет на образование трещин нормальных к продольной оси элемента
- •22. Расчет на образование трещин наклонных к продольной оси элемента
- •23. Ширина раскрытия трещин нормальных к продольной оси элемента
- •24. Ширина раскрытия трещин наклонных к продольной оси элемента
- •25. Расчет на закрытие нормальных и наклонных трещин
- •26. Прогибы железобетонных элементов на участках без трещин в растянутой зоне
- •27. Прогибы железобетонных элементов на участках с трещинами в растянутой зоне
- •28. Сведения о расчете и проектирование жбк
- •29. Конструктивные схемы многоэтажных зданий
2. Бетон как материал для изготовления жбк
Сочетание бетона и стали в железобетоне и их совместная работа под нагрузкой обуславливается удачным сочетанием физико-механических свойств этих материалов. Во-первых, при твердении бетона между ним и стальной арматурой возникает сильное сцепление. Во-вторых, сталь и бетон обладают близкими по значению коэффициентами температурного расширения. В силу этих двух причин в железобетонных конструкциях, при их деформировании под нагрузкой, не происходит проскальзывания арматуры относительно бетона. Наконец, слой бетона защищает стальные арматурные стержни от коррозии.
Железобетон получил широкое распространение в строительстве благодаря ряду своих положительных свойств. Он прочен, причем его прочность со временем возрастает, долговечен, огнестоек, стоек к влиянию атмосферных воздействий, хорошо сопротивляется динамическим нагрузкам, требует минимума эксплуатационных расходов. Бетон дешев и доступен, так как может быть приготовлен из местных строительных материалов, песка и щебня или гравия. Для архитекторов особенно важно то, что железобетонным конструкциям можно придавать любые, самые изощренные пространственные формы. К недостаткам железобетона можно отнести большой собственный вес, большие тепло- и звукопроводность, появление трещин в эксплуатационной стадии, сложность производства работ в зимний период и плохая ремонтоспособность.
Рис.1.1 Деформирование бетонной балки под нагрузкой:
а – бетонная балка; б – балка с армированием; 1 – нейтральная ось;2 – трещина;
3 – сжатая зона сечения балки; 4 – растянутая зона; 5 - арматура
Несмотря на отмеченные недостатки, железобетонные конструкции являются базой современного строительства. Из него возводятся промышленные и сельскохозяйственные здания, тепловые и атомные электростанции, гидротехнические сооружения, тоннели и шахты, а также гражданские здания самого различного назначения. Из железобетона возводятся большепролетные тонкостенные конструкции (складки, оболочки, купола), мосты и эстакады, инженерные сооружения: трубы, башни, резервуары и т.д.
По способу возведения железобетонные конструкции бывают монолитные, сборные и сборно-монолитные. Монолитные изготавливаются непосредственно на строительной площадке (отливаются в опалубке), сборные изготавливаются на заводах и затем монтируются на строительной площадке, сборно-монолитные собираются из сборных элементов и омоноличиваются. Преимущество сборных железобетонных элементов в том, что они изготавливаются на заводах, где возможен строгий контроль качества изделий, их производство и монтаж не зависят от климатических условий, они обеспечивают высокий уровень производительности труда на строительной площадке. Недостатком является наличие монтажных швов, выполняемых в основном на электросварке. Это во-первых, понижает жесткость всего сооружения, во-вторых, требует защиты этих швов от коррозии. Для возведения монолитных железобетонных конструкций требуется предварительное устройство опалубки и ее раскрепление. Затем в опалубке устанавливается арматура и далее производится укладка бетона. Все эти операции более трудоемки, чем производство и монтаж сборных конструкций, однако монолитные конструкции обладают большей жесткостью, их можно сделать водонепроницаемыми и процесс укладки бетонной смеси может быть успешно механизирован. При дополнительном электропрогреве монолитные железобетонные конструкции можно возводить и в зимнее время. Сборно-монолитные конструкции объединяют в себе основные преимущества сборных и монолитных конструкций. Омоноличивание стыков сборных элементов позволяет сохранять жесткость всего сооружения на уровне монолитного, обеспечивает лучшую водонепроницаемость, чем у сборного сооружения, обеспечивает защиту стыков от коррозии и позволяет экономить на опалубочных работах за счет использования сборных элементов в качестве опалубки. Существуют, однако, некоторые виды конструкций в которых опалубочные работы можно свести к минимуму. Например, комплексные конструкции перекрытий в которых монолитная железобетонная плита устраивается поверх профилированного стального настила или при возведении резервуаров для хранения жидкостей в которых железобетонная стена резервуара облицовывается стальными листами, которые могут слу4жить опалубкой. Если к стальной облицовке приварить анкерные стержни, то она включается в работу конструкции как несущий элемент, что значительно сокращает стоимость всего сооружения и увеличивает несущую способность конструкции.
Итак, одним из материалов составляющих железобетон является бетон. Для применения в железобетонных конструкциях бетон должен обладать вполне определенными физическими и механическими характеристиками – прочностью, хорошим сцеплением с арматурой, плотностью строения для защиты арматуры от коррозии, а также рядом спецефических свойств, зависящих от назначения конструкции – таких как морозостойкость, жаростойкость, стойкость к воздействию агрессивных агентов и др.
Бетон образуется в процессе твердения бетонной смеси. Бетонную смесь составляют: вяжущее (как правило – цемент), вода и инертные заполнители (песок, щебень или гравий или искусственные заполнители). Иногда песок называют мелким заполнителем, а щебень - крупным. Смесь цемента с водой (цементное тесто) в процессе твердения образует сначала цементный гель, который обволакивает заполнители, а затем и цементный камень. Прочность бетона целиком определяется прочностью и пористостью цементного камня и зависит от водоцементного отношения (В/Ц), т.е. весового соотношения цемента и воды в единице объема бетонной смеси. Однако это свойство реализуется только в том случае, если в процессе изготовления бетона обеспечивается его плотность. Цементное тесто и песок составляют цементный раствор. Так вот, объем цементного теста должен быть не меньше объема пор в песке, а объем цементного раствора не меньше объема пор в крупном заполнителе. В противном случае в бетоне образуются межзерновые пустоты, которые снизят его прочность. Таким образом, при плотном бетоне, чем меньше цемента по отношению к воде, тем больше прочность цементного камня. Для протекания химических процессов при образовании цементного камня достаточно В/Ц = 0,2, однако при таком малом количестве воды бетонная смесь по консистенции будет очень жесткой и из технологических соображений количество воды увеличивают. По консистенции бетонные смеси бывают подвижными и жесткими. Подвижные смеси получаются при В/ Ц > 0,5 и эти смеси при укладке заполняют опалубку под действием силы тяжести, тогда как жесткие смеси требуют применения механической вибрации. Избыточная вода в процессе дальнейшего твердения бетона частично связывается с цементом, увеличивая прочность бетона, а частично испаряется, образуя поры в цементном камне. Следовательно, с точки зрения консистенции жесткие смеси образуют бетоны с большей прочностью, требуют меньшего расхода цемента, что снижает затраты, зато требуют применения вибрации при укладке, что эти самые затраты увеличивает.
Бетоны классифицируют по многим признакам, однако для несущих конструкций в основном различают тяжелые и легкие бетоны. Тяжелый бетон средней плотности (от 2200 кг/м3 до 2500 кг/м3) получают, используя крупный заполнитель в виде щебня из твердых горных пород – гранита, диабаза, песчаника, известняка и др. и мелкий заполнитель в виде кварцевого песка. Если в качестве заполнителей используют природные или искусственные пористые материалы – перлит, пемзу, керамзит, шлак и им подобные получают легкий бетон с плотностью до 2200 кг/м3. Отметим также, что бетоны различают по гранулометрическому составу заполнителей – крупно- и мелкозернистые и по способу твердения – естественное или твердение при тепловой обработке или пропаривании.
Очень важными характеристиками бетона является его деформативность и прочность. Деформативность бетона, как и других строительных материалов определяется зависимостью между деформациями и напряжениями. Эта зависимость определяется при испытании бетонных призм. На рис.1.2 представлена зависимость «деформация – напряжение» при растяжении и сжатии бетонного образца. Нагрузка на призму прикладывается этапами. На каждом этапе нагружения замеры деформаций производят дважды: сразу после приложения нагрузки и спустя определенное время. Первый замер дает величину упругого деформирования µt, второй полного деформирования µb.
Рис.1.2. Диаграмма зависимости Г – µ при сжатии и растяжении бетона:
1 – пластические деформации; 2 – упругие деформации; 3 – растяжение; 4 - сжатие
Разность между этими величинами характеризует деформирование бетона во времени при постоянной нагрузке и называется деформацией ползучести µpl . Деформации ползучести носят затухающий характер, однако они могут в несколько раз превышать упругие деформации. Если соединить результаты замера полных деформаций на значительном количестве этапов получим гладкую кривую, которая характерна для упругопластического материала. В строительных нормах в качестве величины характеризующей упругие свойства бетона приводится значение начального модуля упругости Eb. Этот начальный модуль упругости соответствует мгновенным деформациям при приложении нагрузки и равен тангенсу угла наклона кривой деформирования в начале координат, рис.1.2. Что касается прочности, то гидратация цемента в твердеющем бетоне протекает в течение долгого времени (десятки лет) и все это время его прочность возрастает. Однако это процесс затухающий и в строительной практике договорились рассматривать прочностные свойства естественно твердеющего бетона в возрасте 28 суток. Прочность бетона получают испытанием на сжатие образцов в виде куба определенных размеров. Такую прочность принято называть кубиковой. В реальных конструкциях один размер всегда преобладает над другими и принято оперировать в расчетах понятием призменная прочность. Призменная прочность меньше кубиковой, так как в призме исключается влияние способа приложения нагрузки на торцах образца.
Несколько слов об усадке бетона. Бетон во влажной среде увеличивается в объеме, а при высушивании уменьшается. Это его свойство называется усадкой. Оно особенно проявляется в период твердения и затухает после первого года существования конструкции. Величина усадки зависит от количества цементного теста в объеме бетона: чем его больше, тем больше усадка. Поэтому в начальный период твердения бетона его необходимо увлажнять, иначе возможно возникновение усадочных трещин. Наряду с температурными деформациями усадка также служит причиной того, что в протяженных железобетонных и бетонных конструкциях необходимо устраивать деформационные швы.
Для целей проектирования бетонных и железобетонных конструкций в строительных нормах устанавливаются показатели различных бетонов в виде классов и марок, основными из которых являются:
класс по прочности на сжатие - B,
класс по прочности на осевое растяжение - Bt,
марка по морозостойкости – F,
марка по водонепроницаемости – W.
Классом бетона по прочности на осевое сжатие, является временное сопротивление сжатию стандартного образца в виде куба с ребром 15 см., испытанного в возрасте 28 дней при естественном твердении при температуре 20о C. Для тяжелого бетона установлены классы от В3,5 до В60. Это означает, что бетон В60 имеет временное сопротивление сжатию 60 МПа (600 кг/см2). Однако на практике уже существуют и применяются бетоны класса В90, например, при строительстве высотных зданий и эти классы оговариваются специальными техническими условиями.
Класс по прочности на осевое растяжение устанавливается испытанием специальных образцов имеющих форму восьмерок. Для всех бетонов класс по прочности на растяжение установлен от Bt 0,8 до Bt3,2.
Марка по морозостойкости F (для тяжелого бетона от F50 до F500) определяет число циклов попеременного замораживания и оттаивания, которое увлажненный бетон способен выдержать при снижении прочности не более чем на 15%.
Марка по водонепроницаемости от W2 до W12 устанавливается при применении бетона для конструкций требующих водонепроницаемости. Цифры в названии марки означают давление воды (кгс/см2) которое должен выдерживать стандартный образец из бетона без признаков просачивания.
