
- •1.Электрическое поле, однородное и неоднородное. Работа по перемещению электрического заряда в однородном поле.
- •2.Напряжение и потенциал.
- •3.Явление электрического тока. Проводники первого и второго рода.
- •4.Электродвижущая сила. Вольт-амперные характеристики источников тока.
- •5.Работа и мощность электрического тока
- •6.Электрическая цепь постоянного тока. Закон Ома для участка цепи
- •7. Электрическая цепь с последовательным включением сопротивлений.
- •8. Разветвлённая электрическая цепь.
- •9. Законы Кирхгофа для разветвлённых цепей
- •10. Закон Джоуля - Ленца.
- •11. Метод контурных токов
- •12. Падение напряжения и потери в электрических цепях
- •13. Магнитное поле и магнитная цепь.
- •14. Основные характеристики магнитного поля
- •15. Ферромагнитные материалы в магнитном поле
- •16. Закон полного тока
- •17. Явление магнитного гистерезиса
- •18. Магнитная цепь. Магнитная проницаемость
- •19. Закон магнитной цепи. Закон полного тока в неоднородной магнитной цепи.
- •20. Расчет магнитных цепей
- •21. Закон электромагнитной индукции. Самоиндукция и взаимоиндукция
- •22. Потери от гистерезиса при перемагничивании. Вихревые токи. Вихревые токи
- •23. Переменный ток. Генерирование переменного тока
- •24. Мгновенное, действующее и среднее значение синусоидальных величин переменного тока
- •25. Электрические цепи однофазного синусоидального тока
- •26. Метод векторных диаграмм. Изобжениеэ.Д.С., напряжений и токов с помощью вращающихся векторов
- •27. Сложение и вычитание синусоидальных функций
- •28. Мгновенная мощность
- •29. Ёмкостной элемент в цепи переменного тока.
- •30. Индуктивный элемент в цепи переменного тока
- •31. Трёхфазный ток. Трёхфазные системы напряжений и токов
- •32. Мощность в цепи переменного тока (активная, реактивная, полная)
- •33. Цепь трёхфазного тока по схеме «Треугольник»
- •34. Цепь трёхфазного тока по схеме «Звезда». Фазные и линейные значения напряжений и токов
- •35. Рабочая точка. Выбор рабочей точки при расчете усилителя.
- •36. Усилитель оэ. Схема усилителя. Назначение элементов.
- •37. Вращающееся магнитное поле. Электрические машины (электродвигатели, электрогенераторы )
- •38. Электрические измерения. Системы электроизмерительных приборов
- •39. Принцип измерения тока, напряжения и мощности в цепях постоянного и переменного токов.
- •40. Электрические машины. Преобразование энергии в электрических машинах
- •41. Переходные процессы в цепях с индуктивностью
- •42. Переходные процессы в цепях, содержащих ёмкость
- •43. Полупроводниковые материалы. Ковалентная связь между атомами. Возбужденная проводимость. Понятие о дырке
- •44. Примесные полупроводники. Проводимость и концентрация носителей заряда; их зависимость от температуры
- •46. Выпрямительные свойства р-n перехода.
- •47. Ток Io и его зависимость от материала и температуры
- •48. Барьерная емкость диода
- •49. Генерация и рекомбинация носителей заряда. Неравновесное Состояние. Время жизни
- •50. Диффузионный биполярный транзистор. Основной параметр
- •51. Подвижность носителей заряда и её зависимость от температуры
- •54. Частотные свойства транзистора Error 404 (страница не найдена)
- •55. Трансформаторы. Принцип действия. Назначение
- •56. Мощность в цепи трехфазного тока
- •61. Вторичные источники питания. Стабилизаторы напряжения и тока
- •62. Логические элементы на биполярных транзисторах.Схемы не, или, и
- •63. Транзисторный ключ.Принцип работы, быстродействие
- •64. Бистабильные ячейки.Транзисторный триггер, принцип действия
- •65. Транзисторный триггер. Режим раздельного и общего входов
11. Метод контурных токов
Ме́тодко́нтурныхто́ков — метод сокращения размерности системы уравнений, описывающей электрическую цепь.
Основные принципы
Любая электрическая цепь, состоящая из Р рёбер (ветвей, участков, звеньев) и У узлов, может быть описана системой уравнений в соответствии с 1-м и 2-м правилами Кирхгофа. Число уравнений в такой системе равно Р, из них У–1 уравнений составляется по 1-му закону Кирхгофа для всех узлов, кроме одного; а остальные Р–У+1 уравнений – по 2-му закону Кирхгофа для всех независимых контуров. Поскольку независимыми переменными в цепи считаются токи рёбер, число независимых переменных равно числу уравнений, и система разрешима.
Существует несколько методов сократить число уравнений в системе. Одним из таких методов является метод контурных токов.
Метод использует тот факт, что не все токи в рёбрах цепи являются независимыми. Наличие в системе У–1 уравнений для узлов означает, что зависимы У–1 токов. Если выделить в цепи Р–У+1 независимых токов, то систему можно сократить до Р–У+1 уравнений. Метод контурных токов основан на очень простом и удобном способе выделения в цепи Р–У+1 независимых токов.
Метод контурных токов основан на допущении, что в каждом из Р–У+1 независимых контуров схемы циркулирует некоторый виртуальный контурный ток. Если некоторое ребро принадлежит только одному контуру, реальный ток в нём равен контурному. Если же ребро принадлежит нескольким контурам, ток в нём равен сумме соответствующих контурных токов (с учётом направления обхода контуров). Поскольку независимые контура покрывают собой всю схему (т.е. любое ребро принадлежит хотя бы одному контуру), то ток в любом ребре можно выразить через контурные токи, и контурные токи составляют полную систему токов.
12. Падение напряжения и потери в электрических цепях
Падение напряжения — постепенное уменьшение напряжения вдоль проводника, по которому течёт электрический ток, обусловленное тем, что проводник обладает активным сопротивлением. Под падением напряжения также понимают величину на которую меняется потенциал при переходе из одной точки цепи в другую.
По закону
Ома на участке проводника, обладающем
активным сопротивлением
,
ток
создаёт
падение напряжения
.
13. Магнитное поле и магнитная цепь.
Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля
Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).
Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.
Основной
силовой характеристикой магнитного
поля является вектор
магнитной индукции
(вектор
индукции магнитного поля). С математической
точки зрения
— векторное
поле, определяющее и конкретизирующее
физическое понятие магнитного поля.
Нередко вектор магнитной индукции
называется для краткости просто магнитным
полем (хотя, наверное, это не самое
строгое употребление термина).
Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.
Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие магнитной среды) выбирают не вектор магнитной индукции
а вектор напряжённости магнитного поля
, что формально можно сделать, так как в вакууме эти два вектора совпадают; однако в магнитной среде вектор не несет уже того же физического смысла, являясь важной, но всё же вспомогательной величиной. Поэтому при формальной эквивалентности обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно
Магнитное поле можно назвать особым видом материи, посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.
Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей.
Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности,свет и все другие электромагнитные волны.
С точки зрения квантовой теории поля магнитное взаимодействие — как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) — виртуальным.
Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца, которая всегда направлена перпендикулярно к векторам v и B. Она пропорциональна заряду частицы q, составляющей скорости v, перпендикулярной направлению вектора магнитного поля B, и величине индукции магнитного поля B. В системе единиц СИ сила Лоренца выражается так:
в системе единиц СГС:
где квадратными скобками обозначено векторное произведение.
Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током. Сила, действующая на проводник с током называется силой Ампера. Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.
Магнитной цепью называется часть электротехнического устройства, предназначенная для создания в его рабочем объеме магнитного поля заданной величины и конфигурации. Магнитная цепь электрических реле, трансформаторов, электрических машин состоит из источников, возбуждающих магнитное поле, и магнитопровода, в котором магнитный поток концентрируется и практически весь замыкается. При расчете магнитной цепи может быть поставлена задача определения намагничивающей силы (н.с.) при заданном магнитном потоке или индукции - это прямая задача. Обратная задача - определить магнитный поток по намагничивающей силе. В обеих задачах должны быть известны размеры участков магнитной цепи и кривая намагничивания материала. Расчет магнитной цепи производится на основании первого закона Кирхгофа, по которому алгебраическая сумма магнитных потоков в узле магнитной цепи равна 0:
и второго закона Кирхгофа для магнитной цепи или закона полного тока
Циркуляция
вектора напряженности магнитного поля
Н по замкнутому контуру равна алгебраической
сумме токов, охватываемых этим
контуром.
Если контур интегрирования
охватывает W витков, то
-
намагничивающая сила или магнитодвижущая
сила (МДС), измеряется в ампер-витках
(ав).
В общем случае
Закон
Ома для участка магнитной цепи длиной
и
площадью S. При напряжении
между
концами участка связь между напряженностью
магнитного поля Н и
индукцией В выражается
формулой:
В этом выражении Ф аналогичен току электрической цепи, а магнитное напряжение - электрическому напряжению. Тогда магнитное сопротивление