
- •1.Электрическое поле, однородное и неоднородное. Работа по перемещению электрического заряда в однородном поле.
- •2.Напряжение и потенциал.
- •3.Явление электрического тока. Проводники первого и второго рода.
- •4.Электродвижущая сила. Вольт-амперные характеристики источников тока.
- •5.Работа и мощность электрического тока
- •6.Электрическая цепь постоянного тока. Закон Ома для участка цепи
- •7. Электрическая цепь с последовательным включением сопротивлений.
- •8. Разветвлённая электрическая цепь.
- •9. Законы Кирхгофа для разветвлённых цепей
- •10. Закон Джоуля - Ленца.
- •11. Метод контурных токов
- •12. Падение напряжения и потери в электрических цепях
- •13. Магнитное поле и магнитная цепь.
- •14. Основные характеристики магнитного поля
- •15. Ферромагнитные материалы в магнитном поле
- •16. Закон полного тока
- •17. Явление магнитного гистерезиса
- •18. Магнитная цепь. Магнитная проницаемость
- •19. Закон магнитной цепи. Закон полного тока в неоднородной магнитной цепи.
- •20. Расчет магнитных цепей
- •21. Закон электромагнитной индукции. Самоиндукция и взаимоиндукция
- •22. Потери от гистерезиса при перемагничивании. Вихревые токи. Вихревые токи
- •23. Переменный ток. Генерирование переменного тока
- •24. Мгновенное, действующее и среднее значение синусоидальных величин переменного тока
- •25. Электрические цепи однофазного синусоидального тока
- •26. Метод векторных диаграмм. Изобжениеэ.Д.С., напряжений и токов с помощью вращающихся векторов
- •27. Сложение и вычитание синусоидальных функций
- •28. Мгновенная мощность
- •29. Ёмкостной элемент в цепи переменного тока.
- •30. Индуктивный элемент в цепи переменного тока
- •31. Трёхфазный ток. Трёхфазные системы напряжений и токов
- •32. Мощность в цепи переменного тока (активная, реактивная, полная)
- •33. Цепь трёхфазного тока по схеме «Треугольник»
- •34. Цепь трёхфазного тока по схеме «Звезда». Фазные и линейные значения напряжений и токов
- •35. Рабочая точка. Выбор рабочей точки при расчете усилителя.
- •36. Усилитель оэ. Схема усилителя. Назначение элементов.
- •37. Вращающееся магнитное поле. Электрические машины (электродвигатели, электрогенераторы )
- •38. Электрические измерения. Системы электроизмерительных приборов
- •39. Принцип измерения тока, напряжения и мощности в цепях постоянного и переменного токов.
- •40. Электрические машины. Преобразование энергии в электрических машинах
- •41. Переходные процессы в цепях с индуктивностью
- •42. Переходные процессы в цепях, содержащих ёмкость
- •43. Полупроводниковые материалы. Ковалентная связь между атомами. Возбужденная проводимость. Понятие о дырке
- •44. Примесные полупроводники. Проводимость и концентрация носителей заряда; их зависимость от температуры
- •46. Выпрямительные свойства р-n перехода.
- •47. Ток Io и его зависимость от материала и температуры
- •48. Барьерная емкость диода
- •49. Генерация и рекомбинация носителей заряда. Неравновесное Состояние. Время жизни
- •50. Диффузионный биполярный транзистор. Основной параметр
- •51. Подвижность носителей заряда и её зависимость от температуры
- •54. Частотные свойства транзистора Error 404 (страница не найдена)
- •55. Трансформаторы. Принцип действия. Назначение
- •56. Мощность в цепи трехфазного тока
- •61. Вторичные источники питания. Стабилизаторы напряжения и тока
- •62. Логические элементы на биполярных транзисторах.Схемы не, или, и
- •63. Транзисторный ключ.Принцип работы, быстродействие
- •64. Бистабильные ячейки.Транзисторный триггер, принцип действия
- •65. Транзисторный триггер. Режим раздельного и общего входов
54. Частотные свойства транзистора Error 404 (страница не найдена)
55. Трансформаторы. Принцип действия. Назначение
Трансформатором называют статическое электромагнитное устройство, имеющее две (или более) индуктивно связанные обмотки и предназначенное для преобразования посредством явления электромагнитной индукции одной (первичной) системы переменного тока в другую (вторичную) систему переменного тока.
Трансформаторы малой мощности различного назначения используются в устройствах радиотехники, автоматики, сигнализации, связи и т. п., а так же для питания бытовых электроприборов. Назначение силовых трансформаторов -- преобразование электрической энергии в электрических сетях и установках, предназначенных для приема и использования электрической энергии.
Трансформаторы специального назначения предназначены для непосредственного питания потребительской сети или приемников электрической энергии, отличающихся особыми условиями работы, характером нагрузки или режимом работы.
Силовой трансформатор
Силовой трансформатор - трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.
Автотрансформатор
Автотрансформамтор -- вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию -- это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4.Существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге -- меньшая стоимость.
Трансформатор тока
Трансформамтор тока -- трансформатор, питающийся от источника тока. Типичное применение -- для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации. Номинальное значение тока вторичной обмотки 1А , 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала!
Трансформатор напряжения
Трансформатор напряжения -- трансформатор, питающийся от источника напряжения. Типичное применение -- преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.
Импульсный трансформатор
Импульсный трансформатор -- это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.[6]
Разделительный трансформатор
Разделительный трансформатор -- трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаний к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.[7]
Пик-трансформатор
Пик-трансформатор -- трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.
Сдвоенный дроссель
Сдвоенный дроссель (встречный индуктивный фильтр) -- конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.
Трансфлюксор - разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора -- это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах управляемых генераторов, элементов сравнения и искусственных нейронов.
Работа трансформатора основана на двух базовых принципах:
Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)
На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.
В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.