
- •1.Электрическое поле, однородное и неоднородное. Работа по перемещению электрического заряда в однородном поле.
- •2.Напряжение и потенциал.
- •3.Явление электрического тока. Проводники первого и второго рода.
- •4.Электродвижущая сила. Вольт-амперные характеристики источников тока.
- •5.Работа и мощность электрического тока
- •6.Электрическая цепь постоянного тока. Закон Ома для участка цепи
- •7. Электрическая цепь с последовательным включением сопротивлений.
- •8. Разветвлённая электрическая цепь.
- •9. Законы Кирхгофа для разветвлённых цепей
- •10. Закон Джоуля - Ленца.
- •11. Метод контурных токов
- •12. Падение напряжения и потери в электрических цепях
- •13. Магнитное поле и магнитная цепь.
- •14. Основные характеристики магнитного поля
- •15. Ферромагнитные материалы в магнитном поле
- •16. Закон полного тока
- •17. Явление магнитного гистерезиса
- •18. Магнитная цепь. Магнитная проницаемость
- •19. Закон магнитной цепи. Закон полного тока в неоднородной магнитной цепи.
- •20. Расчет магнитных цепей
- •21. Закон электромагнитной индукции. Самоиндукция и взаимоиндукция
- •22. Потери от гистерезиса при перемагничивании. Вихревые токи. Вихревые токи
- •23. Переменный ток. Генерирование переменного тока
- •24. Мгновенное, действующее и среднее значение синусоидальных величин переменного тока
- •25. Электрические цепи однофазного синусоидального тока
- •26. Метод векторных диаграмм. Изобжениеэ.Д.С., напряжений и токов с помощью вращающихся векторов
- •27. Сложение и вычитание синусоидальных функций
- •28. Мгновенная мощность
- •29. Ёмкостной элемент в цепи переменного тока.
- •30. Индуктивный элемент в цепи переменного тока
- •31. Трёхфазный ток. Трёхфазные системы напряжений и токов
- •32. Мощность в цепи переменного тока (активная, реактивная, полная)
- •33. Цепь трёхфазного тока по схеме «Треугольник»
- •34. Цепь трёхфазного тока по схеме «Звезда». Фазные и линейные значения напряжений и токов
- •35. Рабочая точка. Выбор рабочей точки при расчете усилителя.
- •36. Усилитель оэ. Схема усилителя. Назначение элементов.
- •37. Вращающееся магнитное поле. Электрические машины (электродвигатели, электрогенераторы )
- •38. Электрические измерения. Системы электроизмерительных приборов
- •39. Принцип измерения тока, напряжения и мощности в цепях постоянного и переменного токов.
- •40. Электрические машины. Преобразование энергии в электрических машинах
- •41. Переходные процессы в цепях с индуктивностью
- •42. Переходные процессы в цепях, содержащих ёмкость
- •43. Полупроводниковые материалы. Ковалентная связь между атомами. Возбужденная проводимость. Понятие о дырке
- •44. Примесные полупроводники. Проводимость и концентрация носителей заряда; их зависимость от температуры
- •46. Выпрямительные свойства р-n перехода.
- •47. Ток Io и его зависимость от материала и температуры
- •48. Барьерная емкость диода
- •49. Генерация и рекомбинация носителей заряда. Неравновесное Состояние. Время жизни
- •50. Диффузионный биполярный транзистор. Основной параметр
- •51. Подвижность носителей заряда и её зависимость от температуры
- •54. Частотные свойства транзистора Error 404 (страница не найдена)
- •55. Трансформаторы. Принцип действия. Назначение
- •56. Мощность в цепи трехфазного тока
- •61. Вторичные источники питания. Стабилизаторы напряжения и тока
- •62. Логические элементы на биполярных транзисторах.Схемы не, или, и
- •63. Транзисторный ключ.Принцип работы, быстродействие
- •64. Бистабильные ячейки.Транзисторный триггер, принцип действия
- •65. Транзисторный триггер. Режим раздельного и общего входов
50. Диффузионный биполярный транзистор. Основной параметр
Биполярным транзистором называется электропреобразовательный полупроводниковый прибор, имеющий в своей структуре два взаимодействующих p-n-перехода и три внешних вывода, и предназначенный, в частности, для усиления электрических сигналов. Термин “биполярный” подчеркивает тот факт, что принцип работы прибора основан на взаимодействии с электрическим полем частиц, имеющих как положительный, так и отрицательный заряд, - дырок и электронов. В дальнейшем для краткости будем его называть просто - транзистором Структура транзистора, изготовленного по диффузионной технологии. Транзистор имеет три области полупроводника, называемые его электродами, причем две крайние области имеют одинаковый тип проводимости, а средняя область - противоположный. Структура транзистора называется n-p-n-структурой. Электроды транзистора имеют внешние выводы, с помощью которых транзистор включается в электрическую схему. Одна из крайних областей транзистора, имеющая наименьшие размеры, называется эмиттером (Э). Она предназначена для создания сильного потока основных носителей заряда (в данном случае электронов), пронизывающего всю структуру прибора. Поэтому эмиттер характеризуется очень высокой степенью легирования (NDЭ = 10 19 - 10 20 см -3 ). Другая крайняя область транзистора, называемая коллектором (К), предназначена для собирания потока носителей, эмиттируемых эмиттером. Поэтому коллектор имеет наибольшие размеры среди областей транзистора. Легируется коллектор значительно слабее эмиттера (подробнее вопрос о выборе концентрации атомов примеси в коллекторе рассмотрен ниже). Средняя область транзистора называется базой (Б). Она предназначена для управления потоком носителей, движущихся из эмиттера в коллектор. Для уменьшения потерь электронов на рекомбинацию с дырками в базе ее ширина WБ делается очень маленькой ( WБ<<Ln), а степень легирования - очень низкой - на 3...4 порядка ниже , чем у эмиттера (N АБ<<N DЭ). Между электродами транзистора образуются p-n-переходы. Переход, разделяющий эмиттер и базу, называется эмиттерным переходом (ЭП), а переход, разделяющий базу и коллектор, - коллекторным переходом (КП). С учетом резкой асимметрии эмиттерного перехода (N DЭ >>N АБ) он характеризуется односторонней инжекцией: поток электронов, инжектируемых из эмиттера в базу, значительно превосходит встречный поток дырок, инжектируемых из базы в эмиттер.
Рис. 1. Структура биполярного транзистора: а- транзистор р- п-р -типа; б - транзистор п-р-n -типа.
Рис. 2. Структура биполярного транзистора р- п-p -типа; I -эмиттерный р-n -переход; 2 - коллекторный р- n -переход.
Рис. 3. Схема включения транзистора.
Принципы
работы. Обычно при работе Т. б. к
эмиттер-ному переходу приложено
напряжение в прямом направлении (+ на p
-эмиттере), а к коллекторному - в обратном
направлении (-на p -коллекторе), В отсутствие
внеш. напряжения на границе р- и и-областей
существует, как известно, потенц. барьер,
мешающий дыркам переходить из р- в n
-область, а электронам - из п- в р- область.
Если к р- n -структуре приложено прямое
напряжение (рис. 4, а), высота потенц.
барьера понижается. При этом дырки из
эмиттера инжектируются в базу (см.
Инжекция носителей заряда), а электроны
- из базы в эмиттер (рис. 4, б). В широком
диапазоне токов выполняется соотношение
где p1 - концентрация дырок в базе на
границе с эмиттером, n1- концентрация
электронов в эмиттере на границе с
базой, р0 - концентрация дырок в эмиттере,
n0 - концентрация электронов в базе (рис.
4, б). Концентрация дырок р0вэмиттере и
концентрация электронов n0. в базе
определяются соответственно концентрациями
легирующих примесей Na и Nd (см. Легирование
полупроводников). Эмиттер транзистора
всегда легируется значительно сильнее,
чем база (Nd<<Na). Поэтому в широком
диапазоне токов n1<<p1.
Принцип действия биполярного транзистора заключается в том, что 2 р-п перехода расположены настолько близко друг к другу, что происходит взаимное их влияние, вследствие чего они усиливают электрические сигналы.
Как показано на рис., это три области – п-, р- и п. (В принципе может быть и наоборот: р-, п-, р-; все рассуждения относительно такого транзистора будут одинаковы, различие только в полярностях напряжений, такой транзистор называется р-п-р, а мы для простоты будем рассматривать п-р-п, изображённый на рис.)
Итак, на рис. изображены три слоя: с электронной электропроводностью, причём сильной, что обозначает плюс - эмиттер, дырочной - база, и снова электронной, но более слабо легированной (концентрация электронов самая малая) – коллектор. Толщина базы, т.е. расстояние между двумя р-п переходами, равное Lб , очень мала. Она должна быть меньше диффузионной длины электронов в базе. Это от единиц до десятка мкм. Толщина базы должна быть не более единиц мкм. Все остальные размеры транзистора не более примерно 1 мм. К слоям прикладывают внешнее напряжение так, что эмиттерный р-п переход смещён в прямом направлении, и через него протекает большой ток, а коллекторный р-п переход смещён в противоположную сторону, так что через него не должен протекать ток. Однако вследствие того, что р-п переходы расположены близко, они влияют друг на друга, и картина меняется: ток электронов, прошедший из эмиттерного р-п перехода, протекает дальше, доходит до коллекторного р-п перехода и электрическим полем последнего электроны втягиваются в коллектор.