
- •1. Технология производства электроэнергии на кэс. Технологическая схема. Основное оборудование на кэс (грэс).
- •2. Система сн кэс. Источники питания, напряжения. Основные сн. (тп, тПр, пвт, гвт и т.Д.). См вопрос №1
- •3. Основные потребители собственных нужд кэс. Их назначение и приводы. Агрегаты сн.
- •4. Ответственные и неответственные механизмы сн.
- •5. Блочный принцип построения схемы кэс. Преимущества блочного принципа. Состав блока.
- •6. Шкала номинальных напряжений и мощностей эс и п/с.
- •7. Основные элементы электрической схемы кэс: g, t, m, a1, a2, b1, b2, q, qs, qn, ta, tv, fv, qr, qf.
- •8. Ру. Их состав и назначение. Закрытые и открытые ру. Кру, крун, круэ
- •9 . Технологическая схема тэц. Состав потребителей и сн тэц. Расход электроэнергии. Отличия тэц от кэс
- •10.Особенности технологии производства электроэнергии на гэс
- •11. Генераторы тэс и гэс. Особенности, основные параметры и характеристики. Твф и тф, твв и т3в.
- •13. Простые, укрупненные и спаренные блоки в схемах кэс. Блоки с генераторным выключателем и без него. Преимущества блоков с генераторным выключателем.
- •14. Структурные схемы тэц. Тэц неблочного типа. Выбор числа генераторов и секций гру.
- •15. Структурные схемы тэц смешанного типа с 2 и 3 ру
- •16. Структурные схемы тэц блочного типа с местной нагрузкой и без нее.
- •17. Выбор автотрансформаторов связи на кэс
- •18. Выбор трансформаторов связи на тэц.
- •19. Комбинированные режимы ат. Коэффициент выгодности. Типовая и номинальная мощность. Мощность обмотки нн. Допустимость комбинированных режимов.
- •20. Выбор ат.
- •21. Структурные схемы подстанций.
- •22. Особенности электрических схем гэс. (см. 13 вопрос)
- •23. Схемы ру. Состав. Основные понятия и определения. Классификация схем.
- •24. Схемы с одной системой сборных шин (без обходной). Особенности. Область применения.
- •25. Схема с двумя системами сборных шин (без обходной). Особенности. Область применения.
- •26. Схемы ру с обходной системой шин, с одной и двумя рабочими. Особенности. Область применения.
- •27. Кольцевые схемы ру 10 кВ и вн.
- •28. Схемы многоугольников.
- •30. Упрощенные схемы ру. Схемы без выключателей, с отделителями и короткозамыкателями. Последовательность работы q, qr, qn, qs при кз на п/с.
- •31. Способы ограничения токов кз.
- •32. Применение токоограничивающих реакторов. Простые и сдвоенные реакторы. Схемы замещения и Ксв. Падение и потеря напряжения. Остаточное напряжение. Преимущества и недостатки сдвоенных реаторов.
- •33. Применение трансформаторов с расщепленной обмоткой, напряжения кз. Коэффициент расщепления. Режимы и их допустимость. Применение в схемах кэс, тэц, гэс и п/ст.
- •34. Выбор линейных реакторов (простых и сдвоенных).
- •35. Авн. Состав, назначение, условия выбора. Место установки в схемах эс и п/с.
- •36. Баковые масляные выключатели. Особенности, область применения. Мкп, у, с.
- •37. Масляные выключатели вмп, вк, мгг, мг, вмт
- •38. Воздушные выключатели ввг, вк, мгг и мг, вмт.
- •39. Выключатели вакуумные. Особенности. Основные элементы конструкции, область применения.
- •40. Выключатели элегазовые. (эгв) Свойства элегаза. Достоинства эгв. Область применения.
- •41. Дуга отключения и ее характеристики. Дуга высокого давления и дуга в вакууме. Срез тока.
- •42. Методы гашения дуги в авн и анн. Состав и назначение анн.
- •43. Осциллограммы тока и напряжения при отключении цепи переменного тока. Восстанавливающаяся электрическая прочность и напряжение (см. 41 и 42 вопрос)
- •45. Дистанционное управление выключателем с электромагнитным приводом. Сигнализация.
- •47. Режимы нейтралей в схемах эс
- •48. Термическая стойкость проводников и аппаратов. Интеграл Джоуда. Критерий термической стойкости.
- •49. Электродинамическая стойкость шинных конструкций и аппаратов. Критерий электродинамической стойкости.
- •50. Принципы построения собственных нужд эс.
13. Простые, укрупненные и спаренные блоки в схемах кэс. Блоки с генераторным выключателем и без него. Преимущества блоков с генераторным выключателем.
Спаренные блоки – для экономии денег на выключатели ( для подключения к РУ 330-500 кВ и мощностью блока до 220-320 МВт)
Укрупненные блоки для ГЭС и устанавливаются трансформаторы с расщепленной низкой обмоткой типа 3*ОРУ533 для блоков по 640 МВт.
Если есть генераторный выключатель не надо переключать СН на резервный ТСН, при выводе генератора в ремонт или его отключения при КЗ.
14. Структурные схемы тэц. Тэц неблочного типа. Выбор числа генераторов и секций гру.
15. Структурные схемы тэц смешанного типа с 2 и 3 ру
ГЛАВНЫЕ СХЕМЫ ТЭЦ
а) Схемы ТЭЦ со сборными шинами генераторного напряжения
Н
а
ТЭЦ с генераторами 63 МВт потребители
электроэнергии, расположенные на
расстоянии 3 — 5 км, могут получать
электроэнергию на генераторном
напряжении. В этом случае на ТЭЦ
сооружается ГРУ 6—10 кВ, как правило, с
одной системой шин по схеме, рассмотренной
на рис. 5.10. Число и мощность генераторов,
присоединенных к ГРУ, определяются на
основании проекта электроснабжения
потребителей и должны быть такими,
чтобы при останове одного генератора
оставшиеся полностью обеспечивали
питание потребителей.
Связь с энергосистемой и выдача избыточной мощности осуществляются по линиям 110 и 220 кВ. Если предусматривается присоединение большого числа линий 110, 220 кВ, то при ТЭЦ сооружается РУ с двумя рабочими и обходной системами шин.
При росте тепловых нагрузок на ТЭЦ могут быть установлены турбогенераторы мощностью 120 МВт и более. Такие турбогенераторы к сборным шинам генераторного напряжения (6 —10 кВ) не присоединяются, так как, во-первых, это резко увеличит токи КЗ, а во-вторых, номинальные напряжения этих генераторов 15,75; 18 кВ отличаются от напряжения распределительных сетей. Мощные генераторы соединяются в блоки, работающие на шины 110 — 220 кВ.
16. Структурные схемы тэц блочного типа с местной нагрузкой и без нее.
Схемы блочных ТЭЦ
Рост единичной мощности турбогенераторов, применяемых на ТЭЦ (120, 250 МВт), привел к широкому распространению блочных схем. В схеме, изображенной на рис. 5.24, потребители 6—10 кВ получают питание реактированными отпайками от генераторов Gl, G2; более удаленные потребители питаются через подстанции глубокого ввода от шин 110 кВ. Параллельная работа генераторов осуществляется на высшем напряжении, что уменьшает ток КЗ на стороне 6—10 кВ. Как и всякая блочная схема, такая схема дает экономию оборудования, а отсутствие громоздкого ГРУ позволяет ускорить монтаж электрической части. Потребительское КРУ имеет две секции с АВР на секционном выключателе. В цепях генераторов для большей надежности электроснабжения устанавливаются выключатели Ql, Q2. Трансформаторы связи Tl, T2 должны быть рассчитаны на выдачу всей избыточной активной и реактивной мощности и обязательно снабжаются РПН.
На трансформаторах блоков G3, G4 также может быть предусмотрено устройство РПН (на рис. 5.24 показано пунктиром), позволяющее обеспечить соответствующий уровень напряжения на шинах 110 кВ при выдаче резервной реактивной мощности ТЭЦ, работающей по тепловому графику. Наличие РПН у этих трансформаторов позволяет уменьшить колебания напряжения в установках с. н.
При дальнейшем расширении ТЭЦ устанавливают турбогенераторы G5, G6, соединенные в блоки. Линии 220 кВ этих блоков присоединяются к близлежащей районной подстанции. На стороне 220 кВ ТЭЦ выключатели не установлены, отключение линии производится выключателем районной подстанции. При недостаточной чувствительности релейной защиты подстанции к повреждениям в трансформаторах Т5, Т6 предусматривают передачу телеотключающего импульса (ТО) или устанавливают короткозамыкатели и отделители. Отключение генераторов производится выключателями Q3, Q4.
Связи между РУ 110 и 220 кВ не предусмотрено, что значительно упрощает схему РУ 220 кВ. Как было отмечено выше, это допустимо в том случае, если связь сетей 110 и 220 кВ осуществляется на ближайшей районной подстанции.
Современные мощные ТЭЦ (500—1000 МВт)
сооружаются по блочному типу. В блоках
генератор — трансформатор устанавливается
генераторный выключатель, что повышает
надежность питания с. н. и РУ высокого
напряжения, так как при этом исключаются
многочисленные операции в РУ с. н. по
переводу питания с рабочего на резервный
трансформатор с. н. при каждом останове
и пуске энергоблока и исключаются
операции выключателями высокого
напряжения. Не следует забывать, что на
ТЭЦ отключение и в
ключение
энергоблоков производятся значительно
чаще, чем на КЭС или АЭС