
- •1. Основные периоды постнатального возраста.
- •2. Понятие гомеостаза, саморегуляция организма.
- •3. Физическое развитие ребенка. Изменение пропорций тела.
- •4. Рефлекторная деятельность цнс.
- •5. Основные виды тканей организма человека.
- •6. Виды мышечной ткани, ее состав, свойства.
- •7. Кровь, её состав, значение форменных элементов
- •8. Скелет человека, функции, основные отделы, развитие скелета
- •9. Локализация функций в коре больших полушарий головного мозга.
- •10. Строение кости, надкостницы, рост кости в длину и ширину.
- •11. Строение позвоночного столба, возрастные изменения, функции.
- •12. Возрастные изменения черепа.
- •13. Строение гортани.
- •14. Мышечные сокращения.
- •15. Тетаническое сокращение мышц
- •16. Рефлекторный тонус мышц.
- •17. Биохимические явления в работающей мышце
- •18.Общая характеристика сердечно-сосудистой системы, большой и малый круги кровообращения.
- •19. Строение сердца, фазы сердечной деятельности.
- •20.Автоматия сердца, проводящая система сердца.
- •22. Система органов дыхания
- •23. Механизмы вдоха и выдоха
- •24. Регуляция дыхания
- •25. Газообмен в легких, тканях.
- •26.Пищеварительная система. Особенности строения ее отделов.
- •27. Основные пищеварительные ферменты.
- •28. Всасывание питательных веществ.
- •29. Строение и значение органов выделения.
- •30. Строение почек.
- •31. Строение нефрона.
- •32. Образование первичной и конечной мочи.
- •33. Регуляция деятельности почек.
- •34. Нервная ткань, основные свойства, строение нейрона.
- •35. Функциональные структуры нейрона
- •37. Генерация потенциала покоя
- •38. Потенциал действия, порог раздражения
- •39. Строение синапсов (электрических и химических).
- •40. Механизм передачи сигнала в химическом синапсе.
- •42. Церебральная жидкость (ликвор).
- •43. Строение спинного мозга, спинномозговые корешки.
- •44. Функции спинного мозга.
- •45. Основные проводящие пути спинного мозга
- •46. Собственные рефлексы спинного мозга
- •47. Продолговатый мозг, строение, функции
- •48. Задний и средний мозг, строение, функции
- •49. Рефлексы, осуществляемые средним мозгом
- •50. Восходящие и нисходящие пути ствола мозга
- •52. Мозжечок, строение, двигательные функции
- •53. Функции рф ствола мозга
- •54. Промежуточный мозг, основные отделы
- •55. Гипоталамус
- •56. Лимбическая система
- •57. Конечный мозг, строение коры больших полушарий
- •58. Вегетативная нервная система.
- •59. Общее представление о железах внутренней секреции.
- •60. Гипоталамо-гипофизарная система
15. Тетаническое сокращение мышц
При воздействии на мышцу ритмических раздражений высокой частоты наступает сильное и длительное сокращение мышцы, которое называется тетаническим сокращением или тетанусом. Амплитуда тетанического сокращения в 2–4 раза выше амплитуды одиночного сокращения при той же силе раздражения. Этот термин впервые применил Э. Вебер в 1821 году.
Тетанус может быть зубчатым (при частоте раздражений 20-40 Гц) или сплошным, гладким (при частоте 50 Гц и выше).
Гладкий тетанус возникает, когда очередной импульс раздражения действует на мышцу до начала фазы расслабления. При очень большой частоте раздражений каждое очередное раздражение будет попадать на фазу абсолютной рефрактерности, и мышца вообще не будет сокращаться. Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе сокращения мышцы. Тетанус наиболее высок при оптимальном ритме, когда каждый последующий импульс действует на мышцу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие условия (оптимум силы и частоты раздражения, оптимум ритма) для работы мышцы.
При тетанических сокращениях мышечные волокна утомляются больше, чем при одиночных сокращениях. Поэтому даже в пределах одной мышцы происходит периодическая смена частоты импульсации (вплоть до полного исчезновения) в разных двигательных единицах.
Импульсы с мотонейронов в условиях покоя участвуют в поддержании мышечного тонуса.
Под тонусом понимают состояние естественного постоянного напряжения мышц при невысоких энергетических затратах. В поддержании тонуса участвуют проприорецепторы мышц (мышечные веретена) и центральная нервная система.
Осуществление тонуса скелетных мышц обусловлено функцией медленных двигательных единиц красных волокон мышц. Тонус скелетных мышц связан с поступлением редких нервных импульсов к мышце, в результате чего мышечные волокна возбуждаются не одновременно, а попеременно. Тонус скелетных мышц играет важную роль в поддержании определенного положения тела в пространстве и деятельности двигательного аппарата.
16. Рефлекторный тонус мышц.
Мышечный тонус. Под мышечным тонусом понимается сопротивление мышц их растяжению при пассивном сгибании и разгибании конечности.
Рефлекторный тонус.
Даже в состоянии видимого покоя некоторые мышцы проявляют слабую электромиографически регистрируемую активность. Благодаря периодической низкочастотной рефлекторной активации небольшого числа двигательных единиц некоторые (но не все) позные мышцы часто находятся в состоянии устойчивого непроизвольного напряжения, обусловленного асинхронной работой их функциональных единиц. Такой нейрогенный «тонус» модулируется системой у волокон мышечных веретен: во время умственного напряжения или эмоционального возбуждения он часто непроизвольно усиливается, а в состоянии глубокого расслабления полностью исчезает.
17. Биохимические явления в работающей мышце
В ответ на нервный импульс мышечное волокно или напрягается или сокращается, в результате образуется мышечный белок аденозинтрифосфорная кислота или АТФ, который необходим для сокращения всех мышц. В работающей мышце химические реакции проходят в 2 фазы:
- бескислородная (анаэробная)
- кислородная (аэробная)
Распад фосфорных соединений (АТФ), образуется адениловая и фосфорная кислота, при этом освобождается энергия. Вслед за распадом АТФ, распад креатинфосфорной кислоты на креатин и фосфорную кислоту. Выделяется энергия, часть ее идет на восстановление АТФ, затем распад гексофосфата (соединение гликогена с фосфорной кислотой), при распаде образуется молочная и фосфорная кислота, выделяется энергия (на восстановление креатинфосфата).
Распад молочной кислоты только в присутствии кислорода. Распадается на воду и углекислый газ, причем часть вновь восстанавливается в гликоген, а только 1/ 3 до воды и кальция + выделение энергии. Переходит в механическую и тепловую энергию. В результате организм теряет гликоген и приобретает энергию.