
- •Случайные события, их классификация. Действия над событиями.
- •Теорема сложения вероятностей несовместных событий.
- •Зависимые и независимые события. Условная вероятность. Теорема умножения вероятностей.
- •Свойства условных вероятностей
- •Формула полной вероятности. Формулы Байеса.
- •Повторные независимые испытания. Формула Бернулли.
- •Наивероятнейшее число появлений события в схеме Бернулли.
- •Локальная и интегральная теоремы Лапласа.
- •Формула Пуассона для редких событий.
- •Дискретная случайная величина, ее закон распределения. Многоугольник распределения.
- •Функция распределения вероятностей случайной величины и ее свойства.
- •Математическое ожидание дискретной случайной величины и его свойства. Математическое ожидание м(х) дискретной случайной величины
- •Свойства математического ожидания
- •Дисперсия дискретной случайной величины и ее свойства. Среднее квадратическое отклонение. Дисперсия случайной величины
- •Свойства дисперсии случайной величины
- •Биномиальный закон распределения и его числовые характеристики.
- •Геометрическое распределение.
- •Гипергеометрическое распределение.
- •Формула Пуассона. Распределение Пуассона.
- •Непрерывная случайная величина, плотность распределения вероятностей непрерывной случайной величины и ее свойства.
- •Математическое ожидание и дисперсия непрерывной случайной величины.
- •Свойства математического ожидания
- •Свойства дисперсии случайной величины
- •Нормальный закон распределения. Влияние параметров распределения на вид нормальной кривой.
- •Вероятность попадания в заданный интервал нормально распределенной случайной величины. Вероятность заданного отклонения. Правило трех сигм.
- •Моменты случайной величины. Асимметрия. Эксцесс.
- •Понятие о центральной предельной теореме.
- •Предмет и метод математической статистики.
- •Генеральная и выборочная совокупности. Способы отбора.
- •Построение дискретного вариационного ряда. Эмпирическая функция распределения и ее свойства.
- •Построение интервального вариационного ряда. Гистограмма частот и относительных частот.
- •Точечное оценивание числовых характеристик случайной величины. Состоятельность, эффективность, несмещенность оценки. Исправленная выборочная дисперсия.
- •Интервальные оценки числовых характеристик случайной величины. Доверительная вероятность. Доверительный интервал.
- •Основные понятия регрессионного и корреляционного анализа.
- •Нахождение параметров линейного уравнения регрессии методом наименьших квадратов.
- •Коэффициент линейной корреляции и его свойства.
- •Статистическая гипотеза. Статистический критерий проверки гипотез. Ошибки первого и второго рода. Критическая область.
- •Проверка гипотезы о математическом ожидании нормально распределенной случайной величины.
- •Проверка гипотезы о равенстве математических ожиданий двух нормально распределенных случайных величин.
- •Критерий согласия Пирсона о предполагаемом законе распределения случайной величины.
- •Критерий согласия Колмогорова о предполагаемом законе распределения случайной величины.
- •Основные понятия дисперсионного анализа. Однофакторный и двухфакторный дисперсионный анализ.
Биномиальный закон распределения и его числовые характеристики.
Если вероятность
появления события А
в каждом испытании постоянна и равна
р,
то число появлений события А —
дискретная случайная величина Х,
принимающая значения 0, 1, 2, …,
с вероятностями
(формула Бернулли), где
,
,
.
Математическое ожидание и дисперсия случайной величины Х, распределенной по биномиальному закону, вычисляется по формулам:
,
.
Геометрическое распределение.
Дискретная случайная
величина
имеет геометрическое распределение,
если она принимает значения 1, 2, …, m,
…(бесконечное, но счетное множество
значений) с вероятностями
,
где
.
Определение
геометрического распределения корректно,
так как сумма вероятностей
Случайная величина , имеющая геометрическое распределение, представляет собой число m испытаний, проведенных по схеме Бернулли, с вероятностью р наступления события в каждом испытании до первого положительного исхода.
Математическое ожидание и дисперсия случайной величины Х , имеющей геометрическое распределение с параметром р вычисляются по формулам:
где
Гипергеометрическое распределение.
Пусть имеется N элементов, из которых М элементов обладают некоторым признаком А. Извлекаются случайным образом без возвращения n элементов. Х — дискретная случайная величина, число элементов обладающих признаком А, среди отобранных n элементов. Вероятность, что Х = m определяется по формуле
.
Математическое ожидание и дисперсия случайной величины, распределенной по гипергеометрическому закону, определяются формулами:
,
.
Формула Пуассона. Распределение Пуассона.
Если число испытаний велико, а вероятность появления события р в каждом испытании очень мала, то вместо формулы Бернулли пользуются приближенной формулой Пуассона
,
где
число
появлений события в n
независимых испытаниях; m
принимает значения
.
(среднее
число появлений события в n
испытаниях).
Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру , который определяет этот закон, т.е.
.
Непрерывная случайная величина, плотность распределения вероятностей непрерывной случайной величины и ее свойства.
НСВ – такая величина Х, которая принимает все значения из некоторого промежутка.
Случайная величина Х называется непрерывной, если ее функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек.
Функция распределения вероятностей F(x) используется для описания как дискретной СВ, так и НСВ. Однако для НСВ во многих случаях удобно использовать другую функцию, которая называется плотностью вероятности (обозначается р(х), в некоторых источниках f(x).
Плотностью вероятностей НСВ Х называется функция р(х), которая равна первой производной от ее функции распределения:
График плотности вероятности называется кривой распределения.
Свойства плотности вероятности непрерывной случайной величины:
D(y): вся числовая прямая, х€R. E(y):
.
3.
4.
.
Геометрически свойства плотности вероятности означают, что ее график — кривая распределения — лежит не ниже оси абсцисс, и полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.