
- •Случайные события, их классификация. Действия над событиями.
- •Теорема сложения вероятностей несовместных событий.
- •Зависимые и независимые события. Условная вероятность. Теорема умножения вероятностей.
- •Свойства условных вероятностей
- •Формула полной вероятности. Формулы Байеса.
- •Повторные независимые испытания. Формула Бернулли.
- •Наивероятнейшее число появлений события в схеме Бернулли.
- •Локальная и интегральная теоремы Лапласа.
- •Формула Пуассона для редких событий.
- •Дискретная случайная величина, ее закон распределения. Многоугольник распределения.
- •Функция распределения вероятностей случайной величины и ее свойства.
- •Математическое ожидание дискретной случайной величины и его свойства. Математическое ожидание м(х) дискретной случайной величины
- •Свойства математического ожидания
- •Дисперсия дискретной случайной величины и ее свойства. Среднее квадратическое отклонение. Дисперсия случайной величины
- •Свойства дисперсии случайной величины
- •Биномиальный закон распределения и его числовые характеристики.
- •Геометрическое распределение.
- •Гипергеометрическое распределение.
- •Формула Пуассона. Распределение Пуассона.
- •Непрерывная случайная величина, плотность распределения вероятностей непрерывной случайной величины и ее свойства.
- •Математическое ожидание и дисперсия непрерывной случайной величины.
- •Свойства математического ожидания
- •Свойства дисперсии случайной величины
- •Нормальный закон распределения. Влияние параметров распределения на вид нормальной кривой.
- •Вероятность попадания в заданный интервал нормально распределенной случайной величины. Вероятность заданного отклонения. Правило трех сигм.
- •Моменты случайной величины. Асимметрия. Эксцесс.
- •Понятие о центральной предельной теореме.
- •Предмет и метод математической статистики.
- •Генеральная и выборочная совокупности. Способы отбора.
- •Построение дискретного вариационного ряда. Эмпирическая функция распределения и ее свойства.
- •Построение интервального вариационного ряда. Гистограмма частот и относительных частот.
- •Точечное оценивание числовых характеристик случайной величины. Состоятельность, эффективность, несмещенность оценки. Исправленная выборочная дисперсия.
- •Интервальные оценки числовых характеристик случайной величины. Доверительная вероятность. Доверительный интервал.
- •Основные понятия регрессионного и корреляционного анализа.
- •Нахождение параметров линейного уравнения регрессии методом наименьших квадратов.
- •Коэффициент линейной корреляции и его свойства.
- •Статистическая гипотеза. Статистический критерий проверки гипотез. Ошибки первого и второго рода. Критическая область.
- •Проверка гипотезы о математическом ожидании нормально распределенной случайной величины.
- •Проверка гипотезы о равенстве математических ожиданий двух нормально распределенных случайных величин.
- •Критерий согласия Пирсона о предполагаемом законе распределения случайной величины.
- •Критерий согласия Колмогорова о предполагаемом законе распределения случайной величины.
- •Основные понятия дисперсионного анализа. Однофакторный и двухфакторный дисперсионный анализ.
Основные понятия регрессионного и корреляционного анализа.
Раздел математической статистики, посвященный изучению взаимосвязей между случайными величинами называется корреляционным анализом. Основная задача корреляционного анализа – это установление характера и тесноты связи между результативными (зависимыми) и факторными (независимыми) показателями (признаками) в данном явлении или процессе. Корреляционную связь можно обнаружить только при массовом сопоставлении фактов.Характер связи между показателями определяется по корреляционному полю. Если Y – зависимый признак, а Х – независимый, то отметив каждый случай X(i) с координатами xi и yi получим корреляционное поле.
Теснота связи определяется с помощью коэффициента корреляции, который рассчитывается специальным образом и лежит в интервалах от минус единицы до плюс единицы. Если значение коэффициента корреляции лежит в интервале от 1 до 0,9 по модулю, то отмечается очень сильная корреляционная зависимость. В случае, если значение коэффициента корреляции лежит в интервале от 0,9 до 0,6, то говорят, что имеет место слабая корреляционная зависимость. Наконец, если значение коэффициента корреляции находится в интервале от – 0,6 до 0,6, то говорят об очень слабой корреляционной зависимости или полной ее отсутствии.
Таким образом, корреляционный анализ применяется для нахождения характера и тесноты связи между случайными величинами.
Регрессионный анализ своей целью имеет вывод, определение (идентификацию) уравнения регрессии, включая статистическую оценку его параметров. Уравнение регрессии позволяет найти значение зависимой переменной, если величина независимой или независимых переменных известна.
Практически, речь идет о том, чтобы, анализируя множество точек на графике (т.е. множество статистических данных), найти линию, по возможности, точно отражающую заключенную в этом множестве закономерность (тренд, тенденцию) – линию регрессии.
По числу факторов различают одно-, двух – и многофакторные уравнения регрессии. По характеру связи однофакторные уравнения регрессии подразделяются на: а) линейные, б) степенные в) показательные и др
Нахождение параметров линейного уравнения регрессии методом наименьших квадратов.
Уравнение регрессии записывается как
где Уiтеор – рассчитанное выравненное значение результативного признака после подстановки в уравнение X.
Параметры а0 и а1 оцениваются с помощью процедур, наибольшее распространение из которых получил метод наименьших квадратов. Его суть заключается в том, что наилучшие оценки ag и а, получают, когда
т.е. сумма квадратов отклонений эмпирических значений зависимой переменной от вычисленных по уравнению регрессии должна быть минимальной. Сумма квадратов отклонений является функцией параметров а0 и а1. Ее минимизация осуществляется решением системы уравнений
Коэффициент линейной корреляции и его свойства.
Практически для количественной оценки тесноты связи широко используют линейный коэффициент корреляции. Иногда его называют просто коэффициентом корреляции. Если заданы значения переменных Х и У, то он вычисляется по формуле
Можно использовать и другие формулы, но результат должен быть одинаковым для всех вариантов расчета.
Свойства коэффициента корреляции:
1. Коэффициент корреляции может принимать значения в интервале от -1 до +1 и равен +1 или -1 тогда, и только тогда, когда все точки диаграммы лежат на прямой линии, т. е. в этом случае имеем функциональную зависимость. Принято считать, что если |r| < 0,30, то связь слабая; при |r| = (0,3÷0,7) – средняя; при |r| > 0,70 – сильная, или тесная. Когда |r| = 1 – связь функциональная. Если же r принимает значение около 0, то это дает основание говорить об отсутствии линейной связи между У и X. Однако в этом случае возможно нелинейное взаимодействие. что требует дополнительной проверки и других измерителей
2. Линейные преобразования, сводящиеся к изменению масштаба или начала отсчета случайных величин Х и У, не изменяют значения коэффициента корреляции
3. Коэффициент корреляции между независимыми случайными величинами Х и Y равен нулю. Обратное утверждение неверно, т. е. из равенства нулю коэффициента корреляции не следует независимость случайных величин Х и Y. Если r(X,Y) = 0, то Х и Y называются некоррелированными.
Только в одном случае некоррелированность случайных величин влечет их независимость. Это имеет место, если Х и Y распределены по нормальному закону.