
- •Ответы к экзамену по радиационной медицине и экологии.
- •2. Понятия: "нуклон", "изотоп", "радионуклид"; их основные характеристики. Радиоактивность, традиционные и системные единицы радиоактивности и их соотношение.
- •3. Закон радиоактивного распада, его практическое использование для обоснования мероприятий по защите населения при авариях на ядерно-физических установках.
- •4. Типы радиоактивных превращений ядер: альфа-, бета-, гамма-превращения ядер. Примеры элементов, претерпевающих соответствующие типы радиоактивных превращений.
- •6. Характеристика рентгеновского и гамма-излучения, их взаимодействие с веществом.
- •7. Стадии формирования лучевого поражения. Прямое и косвенное действие ионизирующих излучений на биомолекулы. Кислородный эффект.
- •8. Радиационная биохимия нуклеиновых кислот. Основные типы репарации днк.
- •I. Прямая репарация:
- •III. Репарация с использованием межмолекулярной информации:
- •IV. Индуцибельная репарация.
- •9. Радиолиз воды. Общая схема окислительного стресса. Радиационная биохимия белков, липидов, углеводов. Действие ионизирующих излучений на мембранные структуры клетки.
- •Действие ионизирующих излучений на белки.
- •Действие ионизирующих излучений на липиды.
- •Действие ионизирующих излучений на мембранные структуры клетки.
- •Действие ионизирующего излучения на углеводы.
- •10. Реакция клеток на облучение. Современные представления о механизмах интерфазной и митотической гибели клетки. Последовательность реакций, ведущих к лизису клетки.
- •11. Методы регистрации ионизирующих излучений, их характеристика, используемые детекторы и приборы.
- •3. Цитогенетические:
- •2) Источника электрического питания
- •12. Дозиметрия. Дозы: экспозиционная, поглощенная, эквивалентная и эффективная; соотношение между системными и внесистемными (традиционными) единицами доз. Коллективные дозы.
- •13. Радиационный фон: составляющие радиационного фона и их вклад в формирование эффективных доз облучения населения. Радиационная обстановка в Республике Беларусь до 1986 года.
- •14. Естественный радиационный фон: источники земного и внеземного происхождения, их вклад в формирование эффективных доз облучения населения.
- •Внеземное ионизирующее излучение.
- •Земное ионизирующее излучение.
- •15. Радиоактивные ряды: понятие, основные дочерние радионуклиды, вклад в формирование эффективных доз облучения населения.
- •16. Радон и уровни облучения населения радоном. Оптимизация дозовых нагрузок, создаваемых радоном и продуктами его распада, на жителей Республики Беларусь.
- •Вклад основных составляющих техногенного фона в формирование глобальной годовой подушной эффективной дозы облучения:
- •Динамика выброса радионуклидов в пространстве.
- •Пути воздействия радионуклидов чернобыльского выброса на население.
- •19. Основные пути проникновения радионуклидов в организм, типы их распределения в организме.
- •2. Н (недели)
- •Типы распределения радионуклидов в организме:
- •20. Сравнительная характеристика перорального и ингаляционного путей поступления растворимых и нерастворимых радионуклидов в организм человека.
- •21. Закон Республики Беларусь «о правовом режиме территорий, подвергшихся радиоактивному загрязнению в результате катастрофы на чаэс». Зоны радиоактивного загрязнения в Республике Беларусь.
- •22. Принципы формирования доз облучения населения после аварии на чаэс. Принципы проживания на загрязненных радионуклидами территориях.
- •23. Характеристика основных дозообразующих радионуклидов: углерод-14, цезий-137, стронций-90, тритий, плутоний-239, америций-241, «горячие частицы».
- •25. Радиочувствительность: определение понятия, критерии оценки. Факторы, определяющие радиочувствительность на клеточном уровне.
- •26. Факторы, определяющие радиочувствительность на тканевом уровне, правило Бергонье-Трибондо. Радиочувствительность на органном, организменном, популяционном и эволюционном уровнях.
- •27. Основные радиационные синдромы: характеристика, связь с дозой облучения.
- •28. Детерминированные последствия радиационного воздействия, их типы и характеристика.
- •4) Неопухолевые формы поражения кожи:
- •29. Стохастические последствия облучения, их характеристика.
- •2. Физиологическая неполноценность потомства:
- •31. Понятие о малых дозах ионизирующего излучения. Действие малых доз ионизирующего излучения на организм. Радиационный гормезис.
- •32. Особенности формирования лучевых поражений у разных возрастных категорий населения. Действие радиации на эмбрион и плод.
- •33. Острая лучевая болезнь: классификация, клинические формы, их связь с дозой облучения, патогенетические механизмы формирования.
- •2) Период восстановления
- •34. Костно-мозговая форма олб (периоды, фазы, степени тяжести); клиническая картина, принципы лечения.
- •В фазу разгара в периферической крови происходят следующие изменения:
- •2) Период восстановления
- •3) Период исходов и последствий.
- •35. Показатели степени тяжести олб в зависимости от фазы развития периода формирования, их прогностическое значение.
- •36. Хроническая лучевая болезнь: классификация; условия развития и особенности различных вариантов хлб.
- •37. Хроническая лучевая болезнь, обусловленная общим облучением: периоды, степени тяжести, изменения со стороны основных систем организма, принципы лечения.
- •Группы первичного учета:
- •Группы риска.
- •2. Евратом
- •3. Воз: медицинская инспекция мероприятий по обеспечению радиационной безопасности
- •2. Фирэ
- •Глава 4 - общие требования по обеспечению радиационной безопасности
- •Глава 5 - обеспечение радиационной безопасности при авариях
- •Глава 6 - права и обязанности граждан и общественных объединений в области обеспечения радиационной безопасности
- •Глава 7 - ответственность за нарушение радиационной безопасности.
- •42. Закрытые и открытые источники ионизирующего излучения. Организация работ с источниками ионизирующего излучения. Методы защиты от внешнего и внутреннего облучения.
- •43. Пути обеспечения радиационной безопасности персонала и населения. Радиационный контроль при работе с источниками ионизирующих излучений, используемыми в медицине. Индивидуальная дозиметрия.
- •1. Ограничение техногенного облучения в нормальных условиях эксплуатирования источников ионизирующего излучения
- •2. Ограничение природного облучения, обусловленного суммарным воздействием природных источников ионизирующего излучения
- •Ограничение природного облучения, обусловленного суммарным воздействием дочерних продуктов радона и торона:
- •Требования к защите от природного облучения в производственных уе 80 мБк/м2словиях:
- •4. Ограничение облучения в результате аварий на ядерных объектах
- •Индивидуальная дозиметрия с помощью термолюминесцентных дозиметров.
- •Индивидуальный фотоконтроль.
- •44. Радиационные аварии. Международная шкала ядерных событий. Обеспечение радиационной безопасности населения при радиационных авариях.
- •Международная шкала ядерных событий.
- •45. Перечень защитных и реабилитационных мероприятий, проводимых в разные сроки после радиационной аварии. «Концепция защиты населения при радиационных авариях на аэс».
- •Радиационная защита щитовидной железы
- •48. Принципы снижения дозовых нагрузок на пациентов при проведении рентгенологических исследований.
- •49. Инструкция: «Контроль доз облучения пациентов при рентгенодиагностических исследованиях» от 11 сентября 2001 г. Категории пациентов, выделяемые при проведении рентгенодиагностических исследований.
- •Форма индивидуального радиационного паспорта.
- •1. Государственного уровня:
- •2. Индивидуального уровня:
- •1) Мероприятия по снижению поступления радионуклидов в организм
- •2) Мероприятия, ограничивающие всасывание радионуклидов в организм
- •3) Мероприятия, направленные на ускорение выведения радионуклидов из организма:
- •1. Задачи на кратность превышения предела дозы.
- •2. Предложить комплекс мероприятий для снижения доз, формирующихся за счет внешнего и внутреннего облучения. Снижение дозы внешнего облучения обеспечивается (подробнее см. Вопрос 42):
- •Снижение дозы внутреннего облучения (подробнее см. Вопрос 42, 50):
- •Литература.
- •Нашы праекты:
Действие ионизирующих излучений на белки.
До 20% поглощенной энергии связано с повреждением белков.
Механизм повреждения белков:
а) при прямом действии ионизирующих излучений: из молекулы белка выбивается электрон и образуется дефектный участок, который мигрирует по полипептидной цепи за счет переброски соседних электронов до тех пор, пока не достигнет участка с повышенными электрон-донорными свойствами. В этом месте в боковых цепях аминокислот возникают свободные радикалы.
б) при косвенном действии ионизирующих излучений: образование свободных радикалов происходит при взаимодействии белковых молекул с продуктами радиолиза воды, что влечет за собой изменение структуры белка:
- разрыв водородных, гидрофобных, дисульфидных связей;
- модификация аминокислот в цепи;
- образование сшивок и агрегатов;
- нарушение вторичной и третичной структуры белка.
Такие нарушения в структуре белка приводят к нарушению его функций (ферментативной, гормональной, рецепторной и др.).
Действие ионизирующих излучений на липиды.
Под влиянием облучения происходит процесс перекисного окисления липидов - образование свободных радикалов ненасыщенных жирных кислот, которые при взаимодействии с кислородом образуют перекисные радикалы, а они, в свою очередь, реагируют с нативными жирными кислотами.
Действие ионизирующих излучений на мембранные структуры клетки.
Так как липиды - основа биомембран, то перекисное окисление повлечет за собой изменение их свойств. Клетка - система взаимосвязанных мембран и многие процессы клеточного метаболизма проходят именно на мембранах, поэтому при повреждении мембран в клетке нарушаются биохимические процессы и энергетический обмен (из-за повреждения митохондрий), происходит сдвиг ионного баланса клетки (выравнивание концентраций натрия и калия вследствие сдвига ионного баланса клетки).
Действие ионизирующего излучения на углеводы.
Углеводы в целом достаточно устойчивы к действию ионизирующего излучения: окислительный распад, укорочение цепи и отщепление альдегидов от простых сахаров наблюдаются при дозах порядка 1000 Гр. Из продукта распада углеводов - глицеринового альдегида - синтезируется метилглиоксаль - вещество, ингибирующее синтез ДНК и белка, и подавляющее деление клеток. Чувствительна к облучению и гиалуроновая кислота, являющаяся составным элементом соединительной ткани: уже при дозе облучения около 10 Гр наблюдается значительное снижение ее вязкости, а при больших дозах – изменение структуры, связанное с отщеплением гексозамина и гексуроновых кислот.
10. Реакция клеток на облучение. Современные представления о механизмах интерфазной и митотической гибели клетки. Последовательность реакций, ведущих к лизису клетки.
Три основных типа реакции клетки на облучение:
а) радиационный блок митозов (временная задержка деления) - наиболее универсальная реакция клетки на воздействие ионизирующих излучений, ее длительность зависит от дозы: на каждый Грей дозы клетка отвечает задержкой митоза в 1 час. Проявляется данный эффект независимо от того, выживет ли клетка в дальнейшем, причем с увеличением дозы облучения увеличивается не число реагирующих клеток, а именно время задержки деления каждой облученной клетки. Эта реакция имеет огромное приспособительное значение: увеличивается длительность интерфазы, оттягивается вступление клетки в митоз, создаются благоприятные условия для нормальной работы системы репарации ДНК.
б) митотическая (репродуктивная) гибель клетки - полная потеря клеткой способности к размножению; развивается при больших дозах ионизирующего излучения. Данный тип реакции не относится к клеткам, не делящимся или делящимся редко. В клетке не выражены дегенеративные процессы. Основная причина митотической гибели клетки - повреждение хромосомного аппарата клетки, приводящее к дефициту синтеза ДНК.
Показателем выживаемости клетки является ее способность проходить 5 и более делений.
Варианты митотической гибели:
1) клетка гибнет в процессе одного из первых четырех пострадиационных митозов, невзирая на отсутствие видимых изменений;
2) облученные клетки после первого пострадиационного митоза формируют так называемые "гигантские" клетки (чаще в результате слияния "дочерних" клеток), которые способны делиться не более 2-3 раз, после чего погибают.
в) интерфазная гибель клетки - гибель клетки, которая наступает до ее вступления в митоз. Для большинства соматических клеток человека она регистрируется после облучения в дозах в десятки и сотни Гр (лимфоциты, как радиочувствительные клетки, гибнут по этому механизму даже при небольших дозах). В клетке наблюдаются различные дегенеративные процессы вплоть до её лизиса.
Механизм интерфазной гибели (последовательность реакций, приводящих к лизису клетки):
1. За счёт разрывов в молекуле ДНК нарушается структура хроматина. В свою очередь, в мембранах идёт процесс перекисного окисления липидов.
2. Изменения ДНК-мембранного комплекса вызывают остановку синтеза ДНК.
3. Повреждение мембраны лизосом приводит к выходу из них ферментов - протеаз и ДНК-аз
4. ДНК-азы разрушают ДНК, что ведет к пикнозу ядра. Повреждение мембран митохондрий ведёт к выходу из них кальция, который активирует протеазы.
Вышеперечисленные процессы приводят к гибели (аутолизу) клетки.