
- •Ответы к экзамену по радиационной медицине и экологии.
- •2. Понятия: "нуклон", "изотоп", "радионуклид"; их основные характеристики. Радиоактивность, традиционные и системные единицы радиоактивности и их соотношение.
- •3. Закон радиоактивного распада, его практическое использование для обоснования мероприятий по защите населения при авариях на ядерно-физических установках.
- •4. Типы радиоактивных превращений ядер: альфа-, бета-, гамма-превращения ядер. Примеры элементов, претерпевающих соответствующие типы радиоактивных превращений.
- •6. Характеристика рентгеновского и гамма-излучения, их взаимодействие с веществом.
- •7. Стадии формирования лучевого поражения. Прямое и косвенное действие ионизирующих излучений на биомолекулы. Кислородный эффект.
- •8. Радиационная биохимия нуклеиновых кислот. Основные типы репарации днк.
- •I. Прямая репарация:
- •III. Репарация с использованием межмолекулярной информации:
- •IV. Индуцибельная репарация.
- •9. Радиолиз воды. Общая схема окислительного стресса. Радиационная биохимия белков, липидов, углеводов. Действие ионизирующих излучений на мембранные структуры клетки.
- •Действие ионизирующих излучений на белки.
- •Действие ионизирующих излучений на липиды.
- •Действие ионизирующих излучений на мембранные структуры клетки.
- •Действие ионизирующего излучения на углеводы.
- •10. Реакция клеток на облучение. Современные представления о механизмах интерфазной и митотической гибели клетки. Последовательность реакций, ведущих к лизису клетки.
- •11. Методы регистрации ионизирующих излучений, их характеристика, используемые детекторы и приборы.
- •3. Цитогенетические:
- •2) Источника электрического питания
- •12. Дозиметрия. Дозы: экспозиционная, поглощенная, эквивалентная и эффективная; соотношение между системными и внесистемными (традиционными) единицами доз. Коллективные дозы.
- •13. Радиационный фон: составляющие радиационного фона и их вклад в формирование эффективных доз облучения населения. Радиационная обстановка в Республике Беларусь до 1986 года.
- •14. Естественный радиационный фон: источники земного и внеземного происхождения, их вклад в формирование эффективных доз облучения населения.
- •Внеземное ионизирующее излучение.
- •Земное ионизирующее излучение.
- •15. Радиоактивные ряды: понятие, основные дочерние радионуклиды, вклад в формирование эффективных доз облучения населения.
- •16. Радон и уровни облучения населения радоном. Оптимизация дозовых нагрузок, создаваемых радоном и продуктами его распада, на жителей Республики Беларусь.
- •Вклад основных составляющих техногенного фона в формирование глобальной годовой подушной эффективной дозы облучения:
- •Динамика выброса радионуклидов в пространстве.
- •Пути воздействия радионуклидов чернобыльского выброса на население.
- •19. Основные пути проникновения радионуклидов в организм, типы их распределения в организме.
- •2. Н (недели)
- •Типы распределения радионуклидов в организме:
- •20. Сравнительная характеристика перорального и ингаляционного путей поступления растворимых и нерастворимых радионуклидов в организм человека.
- •21. Закон Республики Беларусь «о правовом режиме территорий, подвергшихся радиоактивному загрязнению в результате катастрофы на чаэс». Зоны радиоактивного загрязнения в Республике Беларусь.
- •22. Принципы формирования доз облучения населения после аварии на чаэс. Принципы проживания на загрязненных радионуклидами территориях.
- •23. Характеристика основных дозообразующих радионуклидов: углерод-14, цезий-137, стронций-90, тритий, плутоний-239, америций-241, «горячие частицы».
- •25. Радиочувствительность: определение понятия, критерии оценки. Факторы, определяющие радиочувствительность на клеточном уровне.
- •26. Факторы, определяющие радиочувствительность на тканевом уровне, правило Бергонье-Трибондо. Радиочувствительность на органном, организменном, популяционном и эволюционном уровнях.
- •27. Основные радиационные синдромы: характеристика, связь с дозой облучения.
- •28. Детерминированные последствия радиационного воздействия, их типы и характеристика.
- •4) Неопухолевые формы поражения кожи:
- •29. Стохастические последствия облучения, их характеристика.
- •2. Физиологическая неполноценность потомства:
- •31. Понятие о малых дозах ионизирующего излучения. Действие малых доз ионизирующего излучения на организм. Радиационный гормезис.
- •32. Особенности формирования лучевых поражений у разных возрастных категорий населения. Действие радиации на эмбрион и плод.
- •33. Острая лучевая болезнь: классификация, клинические формы, их связь с дозой облучения, патогенетические механизмы формирования.
- •2) Период восстановления
- •34. Костно-мозговая форма олб (периоды, фазы, степени тяжести); клиническая картина, принципы лечения.
- •В фазу разгара в периферической крови происходят следующие изменения:
- •2) Период восстановления
- •3) Период исходов и последствий.
- •35. Показатели степени тяжести олб в зависимости от фазы развития периода формирования, их прогностическое значение.
- •36. Хроническая лучевая болезнь: классификация; условия развития и особенности различных вариантов хлб.
- •37. Хроническая лучевая болезнь, обусловленная общим облучением: периоды, степени тяжести, изменения со стороны основных систем организма, принципы лечения.
- •Группы первичного учета:
- •Группы риска.
- •2. Евратом
- •3. Воз: медицинская инспекция мероприятий по обеспечению радиационной безопасности
- •2. Фирэ
- •Глава 4 - общие требования по обеспечению радиационной безопасности
- •Глава 5 - обеспечение радиационной безопасности при авариях
- •Глава 6 - права и обязанности граждан и общественных объединений в области обеспечения радиационной безопасности
- •Глава 7 - ответственность за нарушение радиационной безопасности.
- •42. Закрытые и открытые источники ионизирующего излучения. Организация работ с источниками ионизирующего излучения. Методы защиты от внешнего и внутреннего облучения.
- •43. Пути обеспечения радиационной безопасности персонала и населения. Радиационный контроль при работе с источниками ионизирующих излучений, используемыми в медицине. Индивидуальная дозиметрия.
- •1. Ограничение техногенного облучения в нормальных условиях эксплуатирования источников ионизирующего излучения
- •2. Ограничение природного облучения, обусловленного суммарным воздействием природных источников ионизирующего излучения
- •Ограничение природного облучения, обусловленного суммарным воздействием дочерних продуктов радона и торона:
- •Требования к защите от природного облучения в производственных уе 80 мБк/м2словиях:
- •4. Ограничение облучения в результате аварий на ядерных объектах
- •Индивидуальная дозиметрия с помощью термолюминесцентных дозиметров.
- •Индивидуальный фотоконтроль.
- •44. Радиационные аварии. Международная шкала ядерных событий. Обеспечение радиационной безопасности населения при радиационных авариях.
- •Международная шкала ядерных событий.
- •45. Перечень защитных и реабилитационных мероприятий, проводимых в разные сроки после радиационной аварии. «Концепция защиты населения при радиационных авариях на аэс».
- •Радиационная защита щитовидной железы
- •48. Принципы снижения дозовых нагрузок на пациентов при проведении рентгенологических исследований.
- •49. Инструкция: «Контроль доз облучения пациентов при рентгенодиагностических исследованиях» от 11 сентября 2001 г. Категории пациентов, выделяемые при проведении рентгенодиагностических исследований.
- •Форма индивидуального радиационного паспорта.
- •1. Государственного уровня:
- •2. Индивидуального уровня:
- •1) Мероприятия по снижению поступления радионуклидов в организм
- •2) Мероприятия, ограничивающие всасывание радионуклидов в организм
- •3) Мероприятия, направленные на ускорение выведения радионуклидов из организма:
- •1. Задачи на кратность превышения предела дозы.
- •2. Предложить комплекс мероприятий для снижения доз, формирующихся за счет внешнего и внутреннего облучения. Снижение дозы внешнего облучения обеспечивается (подробнее см. Вопрос 42):
- •Снижение дозы внутреннего облучения (подробнее см. Вопрос 42, 50):
- •Литература.
- •Нашы праекты:
12. Дозиметрия. Дозы: экспозиционная, поглощенная, эквивалентная и эффективная; соотношение между системными и внесистемными (традиционными) единицами доз. Коллективные дозы.
Дозиметрия - это измерение дозы или ее мощности.
Доза ионизирующего излучения - количество энергии ионизирующей радиации, поглощенной единицей массы любой облучаемой среды. Мощность дозы - доза излучения в единицу времени.
Основная задача дозиметрии - определение дозы излучения в различных средах и в тканях живого организма.
Значение дозиметрии:
- необходима для количественной и качественной оценки биологического эффекта доз ионизирующих излучений при внешнем и внутреннем облучении организма
- необходима для обеспечения радиационной безопасности при работе с радиоактивными веществами
- с ее помощью можно обнаружить источник излучения, определить его вид, количество энергии, а также степень воздействия излучения на облучаемый объект.
Виды доз:
а) экспозиционная доза (Х) - количественная характеристика поля источника ионизирующего излучения (гамма или рентгеновского), характеризующая величину ионизации сухого воздуха при атмосферном давлении.
Кулон на килограмм (Кл/кг, C/kg) - системная единица экспозиционной дозы; 1 Кл/кг равен экспозиционной дозе фотонного излучения, при которой сумма электрических зарядов всех ионов одного знака, созданных электронами, освобожденными в облученном воздухе массой 1 кг, при полном использовании ионизирующей способности всех электронов, равна 1 Кл.
Рентген (Р, R) - традиционная (внесистемная) единица экспозиционной дозы; 1 рентген равен экспозиционной дозе рентгеновского или гамма-излучения в воздухе, при которой в результате полной ионизации в 1 см3 сухого атмосферного воздуха при температуре 0о С и давлении 760 мм рт. ст. (т.е. в 0,001293 г сухого атмосферного воздуха) образуются ионы, несущие заряд, равный 1 единице заряда СГС каждого знака.
СГС - система единиц измерения, в которой существуют три независимые величины: сантиметр-грамм-секунда.
Соотношение единиц: 1 Р = 2,58*10-4 Кл/кг (точно); 1 Кл/кг = 3,88*103 Р (приблизительно).
Мощность экспозиционной дозы - величина, выраженная в мР/ч или мкР/ч. Обычные фоновые показатели мощности экспозиционной дозы для Беларуси - до 18-20 мкР/ч.
По традиции экспозиционную дозу использовали в рентгенодиагностике благодаря тому, что ионизирующая способность рентгеновского излучения для воздуха и биологической ткани приблизительно одинакова. Однако, при переходе к высокоэнергетическим типам излучения, выяснилась ограниченность использования этой характеристики при оценке поглощенной дозы, особенно в живых организмах. В связи с этим экспозиционная доза применяется для оценки поля источника излучения, а для определения взаимодействия ионизирующих излучений со средой используется поглощенная доза.
б) поглощенная доза (D) - количество энергии, поглощаемое единицей массы облучаемого вещества.
Джоуль на килограмм (Грей, Гр, Gy) - системная единица поглощенной дозы. 1 Дж/кг = 1 Гр.
Рад (rad, rd - radiation absorbed dose - поглощенная доза излучения) - традиционная (внесистемная) единица поглощенной дозы.
Соотношение единиц: 1 рад = 0,01 Гр.
Для мягких тканей человека в поле рентгеновского или -излучения поглощенная доза в 1 рад примерно соответствует экспозиционной в 1 P.
Поглощенная доза не зависит от вида и энергии ионизирующего излучения и определяет степень радиационного воздействия, т.е. является мерой ожидаемых последствий облучения.
Учитывая существенные различия в механизме взаимодействия разных типов излучения с веществом, ионизирующей способности и т.д., следует ожидать, что одна и та же поглощенная доза может дать разный биологический эффект. Для количественной оценки такого различия вводятся понятия: “взвешивающие коэффициенты для различных видов излучения (WR)” и “эквивалентная доза”.
в) эквивалентная доза (HTR) - мера выраженности биологического эффекта облучения. При расчете эквивалентной дозы используют взвешивающие коэффициенты как множители поглощенной дозы:
,
где HTR
-
эквивалентная
доза в органе или ткани Т, созданная
излучением R;
DTR-
средняя поглощенная доза от излучения
R в ткани или органе T; WR
–
взвешивающий коэффициент для излучения
R.
Взвешивающие коэффициенты (WR) позволяют учесть относительную эффективность различных видов излучения в индуцировании биологических эффектов.
Так как WR - безразмерный множитель, системная единица для эквивалентной дозы та же, что и для поглощенной дозы - Дж/кг (специальное название - Зиверт: Зв, Sv)
Бэр (rem) - внесистемная единица эквивалентной дозы (бэр - биологический эквивалент рада).
Соотношение единиц: 1 бэр = 0,01 Зв.
Взвешивающие коэффициенты для отдельных видов излучения.
Вид излучения и диапазон энергии |
Взвешивающий коэффициент WR |
Фотоны любых энергий |
1 |
Электроны и мюоны любых энергий |
1 |
Альфа-частицы, осколки деления, тяжелые ядра |
20 |
Нейтроны с энергией: менее 10 кэВ |
5 |
от 10 кэВ до 100 кэВ |
10 |
от 100 кэВ до 2 МэВ |
20 |
от 2 МэВ до 20 МэВ |
10 |
более 20 МэВ |
5 |
Риск развития стохастических последствий облучения организма человека зависит не только от эквивалентной дозы, но и от радиочувствительности тканей или органов, подвергшихся облучению. Радиочувствительность органов и тканей учитывает эффективная доза.
г) эффективная доза (Е) - величина воздействия ионизирующего излучения, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности; представляет сумму произведений эквивалентных доз в тканях и органах тела на соответствующие взвешивающие коэффициенты:
,
где HT - эквивалентная доза в ткани или органе T; WT - взвешивающий коэффициент для органа или ткани T.
Взвешивающий коэффициент WT характеризует относительный вклад данного органа или ткани в суммарный ущерб здоровью из-за развития стохастических эффектов. Сумма WT равна 1.
Системная единица эффективной дозы - зиверт (Зв, Sv); внесистемная единица – бэр. 1 Зв равен 100 бэр.
Взвешивающие коэффициенты для тканей и органов при расчете эффективной дозы (WT).
Ткань или орган |
WT |
Ткань или орган |
WT |
Гонады |
0.20 |
Печень |
0.05 |
Красный костный мозг |
0.12 |
Пищевод |
0.05 |
Толстый кишечник |
0.12 |
Щитовидная железа |
0.05 |
Легкие |
0.12 |
Кожа |
0.01 |
Желудок |
0.12 |
Клетки костных поверхностей |
0,01 |
Мочевой пузырь |
0.05 |
Остальное |
0.05 |
Молочные железы |
0.05 |
|
|
Соотношение между системными и внесистемными единицами доз.
Величина и ее символ |
Единица СИ |
Внесист. единица |
Соотношение между единицами |
Экспозиционная доза, X |
Кл/кг |
Р |
1 Кл/кг = 3,88*103 Р 1 Р = 2,58 *10-4 Кл/кг |
Поглощенная доза, D |
Гр (Дж/кг) |
рад |
1 Гр = 100 рад 1 рад = 0,01 Гр |
Эквивалентная доза, H |
Зв |
бэр |
1 Зв = 100 бэр 1 бэр = 0,01 Зв |
Эффективная доза, E |
Зв |
Бэр |
1 Зв = 100 бэр 1 бэр = 0,01 Зв |
Для оценки эффектов облучения группы людей используют коллективные дозы:
а) коллективная эквивалентная доза (ST) в ткани T - используется для выражения общего облучения конкретной ткани или органа у группы лиц; она равна произведению числа облученных лиц на среднюю эквивалентную дозу в органе или ткани.
б) коллективная эффективная доза (S) - относится к облученной популяции в целом; она равна произведению числа облученных лиц на среднюю эффективную дозу.
В определении коллективной эквивалентной и коллективной эффективной доз не указано время, за которое получена доза. Поэтому при расчете коллективных доз всегда должно быть четкое указание на период времени и группу лиц, по которым проводился данный расчет.
Коллективные дозы используют для оценки лучевой нагрузки на популяцию и риска развития стохастических последствий действия ионизирующих излучений. Единицы коллективных доз – человеко-зиверт и человеко-бэр.
«Подушная доза» (per caput dose, Зв) - значение коллективной дозы, разделенное на число членов облученной группы.