Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры математика2.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
445.12 Кб
Скачать

Вопрос 19

Полуплоскость в математике — множество точек плоскости, лежащих по одну сторону от некоторой прямой на этой плоскости.

Полуплоскость в математике — множество точек плоскости, лежащих по одну сторону от некоторой прямой на этой плоскости.

Существует множество эквивалентных определений:

  • многоугольник будет выпуклым, если для любых двух точек внутри него соединяющий их отрезок полностью лежит в нём.

  • многоугольник без самопересечений такой, что каждый внутренний угол которого не более 180°;

  • многоугольник такой, что все его диагонали полностью лежат внутри него;

  • выпуклая оболочка конечного числа точек на плоскости;

  • ограниченное множество являющееся пересечением конечного числа замкнутых полуплоскостей.

Вопрос 20

Функция (отображение, оператор, преобразование) — математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция — это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).

Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так значение переменной однозначно определяет значение выражения , а значение месяца однозначно определяет значение следующего за ним месяца, также любому человеку можно сопоставить другого человека — его отца. Аналогично, некоторый задуманный заранее алгоритм по варьируемым входным данным выдаёт определённые выходные данные.

Часто под термином «функция» понимается числовая функция; то есть функция, которая ставит одни числа в соответствие другим. Эти функции удобно представляются на рисунках в виде графиков.

Аналитический способ

Функция, как математический объект, представляет собой бинарное отношение, удовлетворяющее определенным условиям. Функцию можно задать непосредственно как множество упорядоченных пар, например: есть функция . Однако, этот способ совершенно непригоден для функций на бесконечных множествах (каковыми являются привычные вещественные функции: степенная, линейная, показательная, логарифмическая и т. п.).

Для задания функции пользуются выражением: . При этом, есть переменная, пробегающая область определения функции, а  — область значений. Эта запись говорит о наличии функциональной зависимости между элементами множеств. х и y могут пробегать любые множества объектов любой природы. Это могут быть числа, векторы, матрицы, яблоки, цвета радуги. Поясним на примере:

Пусть имеется множество яблоко, самолет, груша, стул и множество человек, паровоз, квадрат . Зададим функцию f следующим образом: (яблоко, человек), (самолет, паровоз), (груша, квадрат), (стул, человек) . Если ввести переменную x, пробегающую множество и переменную y, пробегающую множество , указанную функцию можно задать аналитически, как: .

Аналогично можно задавать числовые функции. Например: , где х пробегает множество вещественных чисел, задает некоторую функцию f. Важно понимать, что само выражение не является функцией. Функция, как объект, представляет собой множество (упорядоченных пар). А данное выражение, как объект, есть равенство двух переменных. Оно задает функцию, но не является ею.

Однако, во многих разделах математики, можно обозначать через f(x) как саму функцию, так и аналитическое выражение, ее задающее. Это синтаксическое соглашение является крайне удобным и оправданным.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]