
- •1. Основные понятия и законы химии. Атомно-молекулярное учение. Закон сохранения веществ. Закон постоянства состава.
- •2. Закон эквивалентов. Понятие об эквиваленте и способы его определения.
- •3. Закон Авогадро. Следствия из этого закона.
- •4. Учение о химических процессах. Основные понятия термодинамики.
- •6. Скорость химических реакций. Зависимость скорости реакции от природы и концентрации реагирующих веществ. Закон действия масс.
- •7. Влияние температуры на скорость химических реакций. Закон Вант-гоффа. Математическое выражение этого закона.
- •8. Химическое равновесие, условия смещения равновесия. Принцип Ле-Шателье.
- •9. Какие химические реакции называются обратимыми и необратимыми. В какую сторону сместиться равновесие реакции
- •Пример 2. Синтез аммиака протекает согласно уравнению:
- •10. Соли, кислоты, основания с точки зрения электролитической диссоцации. Их состав и свойства. Амфотерные гидроксиды. Особенности амфотерных гидроксидов.
- •11. Химическая связь и валентность.
- •12. Ионная химическая связь. Образование молекулы NaCl. Свойства ионных соединений.
- •13. Ковалентная связь. Строение h2 и Cl2. Образование молекулы хлороводорода согласно методу валентных связей.
- •2.3.3. Основные положения метода валентных связей
- •14. Растворы. Физическая и химическая теории растворов. Тепловые эффекты при растворении.
- •6.2. Процесс образования растворов. Тепловые эффекты при растворении
- •15. Растворы. Концентрация растворов и способы ее выражения. Дайте определение нормальной, молярной и процентной концентрации.
- •16. Ионной произведение воды. Водородный показатель растворов.
- •17. Гидролиз солей. Основные типы гидролизы солей.
- •18. Какие из перечисленных солей подвергаются гидролизу: k2so4, MgCl2, kcn, NaNo3. Составьте возможные уравнения гидролиза (первую ступень).
- •19. Основные положения теории электрической диссоциации. Степень и константа диссоциации. Сильные и слабые электролиты.
- •20. Окислительно – восстановительные реакции. Какие вещества называются окислителями, восстановителями.
- •1. Окисление – процесс отдачи электронов атомам, молекулой или ионом. Степень
- •2. Восстановление – процесс присоединения электронов атомом, молекулой или ионом.
- •21. Что называется процессом окисления и процессом восстановления. Составьте электронные уравнения процессов, происходящих при следующих превращениях:
- •Окислительно-восстановительная реакция между водородом и фтором
- •Окисление, восстановление
- •22.Составьте схему электронного баланса и расставьте коэффициенты в овр:
- •23. Типы овр: межмолекулярные., внутримолекулярные, диспропорционирования. К какому типу относится данные реакции:
- •24. Химические свойства металлов. Отношение металлов к воде. Какие металлы будут взаимодействовать с водой:Na,Cu,Fe. Напишите уравнения реакции.
- •3) Эта реакция невозможна. Хотя в присутствии кислорода медь окисляется во влажной атмосфере (бронзовые памятники зеленеют)
- •25.Отношение металлов к соляной кислоте:Fe, Ag, Mg
- •26 Отношение к разбавленной серной кислоте.
- •Разбавленная серная кислота
- •2) Вытесняют водород из разбавленной серной кислоты. Мы видим пузырьки водорода при добавлении разбавленной серной кислоты в пробирку с цинком.
- •3) Cеребро стоит в ряду напряжений после водорода – поэтому разбавленная серная кислота не действует на серебро
- •27 Отношение к концентрированной серной кислоте
- •1) Медь - менее активный металл. При взаимодействии с концентрированно серной кислотой восстанавливает ее до сернистого газа.
- •28 Отношение к разбавленной азотной кислоте: магния, меди, золота
- •29 Отношение к концентрированной азотной кислоте: серебра, алюминия, кальция Концентрированная азотная кислота
- •Примеры
- •30 Отношение металлов к щелочам.
- •31 Взаимодействие металлов с солями
- •31 Электродные процессы.Понятия об электродном потенциале. Водородный электрод. Измерение электродных потенциалов.
- •35Что называется электролизом? Анодные и катодные процессы при электролизе на примере раствора нитрата натрия с нерастворимым анодом.
- •36 Напишите уравнение процессов, происходящих при электролизе водного раствора хлорида железа нерастворимым анодом
- •37 Электролиз расплавов. Напишите уравнение процессов, происходящих при электролизе расплава хлорида калия.
- •38 Законы фарадея. Математическое выражение этих законов. Применение электролиза в промышленности
- •39 В какой последовательности разряжаются ионы на катоде при электролизе смеси расплавов солей:HgCl2, PbCl2, kCl
- •40 Cтроение атома. Протонно- электронная модель атомного ядра
- •41 Квантовые характеристики состояния электрона в атоме
- •42Правило Клечковсвого на примере заполнения электронами энергетических уровней и подуровней в атоме элемента калия.
- •Решение
- •43 Правило Клечковского на примере элемента скандия. К какому семейству относится данный элемент.
- •44Порядок заполнения электронами энергетических ячеек.Составвьте электрон-графическую формулу углерода, согласно правилу Гунда.
- •45 Дайте определение коррозии металлов. Основные признаки коррозии. Типы коррозии. Химическая коррозия, газовая, жидкостная.
- •Классификация видов коррозии
- •Коррозия неметаллических материалов
- •Коррозия металлов
- •Химическая коррозия
- •Электрохимическая коррозия
- •Борьба с коррозией
- •Цинкование
- •Защита металлов от коррозии
- •Коррозионная стойкость
- •Электрохимическая защита от коррозии
- •Межкристаллитная коррозия
- •46 Электрохимическая коррозия. Коррозия технического железа в кислой среде. Составьте схему микрогальванического элемента при коррозии
- •48 Железо, покрытое оловом. Какое это покрытие? Напишите схему коррозии металла при нарушении покрытия во влажной среде на воздухе.
- •49 Стальная конструкция, покрытая цинком. Какое это покрытие? Напишите схему коррозии металла в случае нарушения покрытия во влажном воздухе. Какой тип покрытия?
- •50 Методы электрохимической защиты: катодная защита – принцип метода; анодная защита (протекторная)
- •51 Защита металлов от коррозии: металлические и неметаллические покрытия
- •Металлические защитные покрытия хром, никель, цинк, кадмий, алюминий, олово и др.
- •Неметаллические защитные покрытия лаки, краски, эмали, фенолформальдегидные смолы и др
- •54 Химия выжущих веществ. Коррозия цементного камня.
10. Соли, кислоты, основания с точки зрения электролитической диссоцации. Их состав и свойства. Амфотерные гидроксиды. Особенности амфотерных гидроксидов.
Кислоты. Для кислот характерны следующие общие свойства:
а) способность взаимодействовать с основаниями с образованием солей;
б) способность взаимодействовать с некоторыми металлами с выделением водорода;
в) способность изменять цвета индикаторов, в частности, вызывать красную окраску лакмуса;
г) кислый вкус.
При диссоциации любой кислоты образуются иокы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить присутствием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т. д. С устранением ионов водорода, например при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода.
У сильных кислот, диссоциирующих нацело, свойства кислот проявляются в большей степени, у слабых — в меньшей. Чем лучше кислота диссоциирует, т. е. чем больше ее константа диссоциации, тем она сильнее.
Основания. Водные растворы оснований обладают следующими общими свойствами:
а) способностью взаимодействовать с кислотами с образованием солей;
б) способностью изменять цвета индикаторов иначе, чем их изменяют кислоты (например, они вызывают синюю окраску лакмуса);
в) своеобразным «мыльным» вкусом.
Поскольку общим для всех растворов оснований является присутствие в них гидроксид-ионов, то ясно, что носителем основных свойств является гидроксид-ион. Поэтому с точки зрения теории электролитической диссоциации основания — это электролиты, диссоциирующие в растворах с отщеплением гидроксид-ионов.
Сила оснований, как и сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации данного основания, тем оно сильнее.
Существуют гидроксиды, способные вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями. К таким гидроксидам принадлежит гидроксид цинка. При взаимодействии его, например, с соляной кислотой получается хлорид цинка
а при взаимодействии с гидроксидом натрия — цинкат натрия;
Гидроксиды, обладающие этим свойством, называются амфотерными гидроксидами, или амфотерными электролитами. К таким гидроксидам кроме гидроксида цинка относятся гидроксиды алюминия, хрома и некоторые другие.
Явление амфотерности объясняется тем, что в молекулах амфотерных электролитов прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Диссоциация таких молекул возможна, следовательно, по местам обеих этих связей. Если обозначить амфо-терный электролит формулой ROH, то его диссоциацию можно выразить схемой:
Таким образом, в растворе амфотериого электролита существует сложное равновесие, в котором участвуют продукты диссоциации как по типу кислоты, так и по типу основания.
Явление амфотерности наблюдается также среди некоторых органических соединений. Важную роль оно играет в биологической химии; например, белки — амфотерные электролиты.
Соли. Соли можно определить как электролиты, которые при растворении в воде диссоциируют, отщепляя положительные ионы, отличные от ионов водорода, и отрицательные ионы, отличные от гидроксид-ионов. Таких ионов, которые были бы общими для водных растворов всех солей, нет; поэтому соли и не обладают общими свойствами. Как правило, соли хорошо диссоциируют, и тем лучше, чем меньше заряды ионоз, образующих соль.
При растворении кислых солей в растворе образуются катионы металла, сложные анионы кислотного остатка, а также ионы, являющиеся продуктами диссоциации этого сложного кислотного остатка, в том числе ионы H+. Например, при растворении гидрокарбоната натрия диссоциация протекает согласно следующим уравнениям:
При диссоциации основных солей образуются анионы кислоты и сложные катионы, состоящие из металла и гидроксогрупп. Эти сложные катионы также способны к диссоциации. Поэтому в растворе основной соли присутствуют ионы OH-. Например, при растворении хлорида гидроксомагния диссоциация протекает согласно уравнениям:
Таким образом, теория электролитической диссоциации объясняет общие свойства кислот присутствием в их растворах ионов водорода, а общие свойства оснований — присутствием в их растворах гидроксид-ионов. Это объяснение не является, однако, общим. Известны химические реакции, протекающие с участием кислот и оснований, к которым теория электролитической диссоциации неприменима.
В частности, кислоты и основания могут реагировать друг с другом, не будучи диссоциированы на ноны. Так, безводный хлороводород, состоящий только из молекул, легко реагирует с безводными основаниями. Кроме того, известны вещества, не имеющие в своем составе гидроксогрупп, но проявляющие свойства основании. Например, аммиак взаимодействует с кислотами и образует соли (соли аммония), хотя в его составе нет групп ОН. Так, с хлороводородом он образует типичную соль — хлорид аммония:
Изучение подобного рода реакций, а также реакций, протекающих в иеводиых средах, привело к созданию более общих представлений о кислотах и основаниях. К важнейшим из современных теории кислот и оснований принадлежит протонная теория, выдвинутая в 1923 г.
Согласно протонной теории, кислотой является донор протона, т. е. частниа (молекула или ион), которая способна отдавать ион водорода — прогон, а основанием — акцептор протона, т. е. частица (молекула или ион), способная присоединять протон. Соотношение между кислотой и основанием определяется схемой:
Связанные этим соотношением основание и кислота называются сопряженными. Например, HSO4- является основанием, сопряженным кислоте H2SO4.
Реакцию между кислотой и основанием протонная теория представляет схемой:
Например, в реакции
ион Cl- — основание, сопряженное кислоте HCl, а ион NH4+ — кислота, сопряженная основанию NH3.
Существенным в протонной теории является то положение, что вещество проявляет себя как кислота или как основание в зависимости от того, с каким другим веществом оно вступает в реакцию. Важнейшим фактором при этом является энергия связи вещества с протоном. Так, в ряду NH3-H2O-HF эта энергия максимальна для NH3 и минимальна для HF. Поэтому в смеси с NH3 вода функционирует как кислота, а в смеси с HF — как основание:
Амфотерные гидроксиды– это сложные вещества, которые имеют свойства кислот и свойства оснований. Поэтому формулы амфотерных гидроксидов можно записывать в форме оснований и в форме кислот. Физические свойства Все амфотерные гидроксиды—твердые вещества, не растворимые в воде. Окраска амфотерных гидроксидов зависит от характера входящих в их состав катионов металлов. Химические свойства В нейтральной среде амфотерные гидроксиды практически не растворяются и не дисоциируют на ионы. Они растворяются в кислотах и щелочах
Zn + 2OH = Zn(OH)2 = 2H + ZnO2
Cr + 3OH = Cr(OH)3 = H + CrO2 + H2O
Амфотерные гидроксиды взаимодействуют как с кислотами, так и с щелочами, образуя соль и воду.
Взаимодействие
· С кислотами Zn(OH)2 + 2HCl = ZnCl2 + 2H2O
· С щелочами Zn(OH)2 + 2NaOH = Na2ZnO2 + 2H2O