
- •1. Основные понятия и законы химии. Атомно-молекулярное учение. Закон сохранения веществ. Закон постоянства состава.
- •2. Закон эквивалентов. Понятие об эквиваленте и способы его определения.
- •3. Закон Авогадро. Следствия из этого закона.
- •4. Учение о химических процессах. Основные понятия термодинамики.
- •6. Скорость химических реакций. Зависимость скорости реакции от природы и концентрации реагирующих веществ. Закон действия масс.
- •7. Влияние температуры на скорость химических реакций. Закон Вант-гоффа. Математическое выражение этого закона.
- •8. Химическое равновесие, условия смещения равновесия. Принцип Ле-Шателье.
- •9. Какие химические реакции называются обратимыми и необратимыми. В какую сторону сместиться равновесие реакции
- •Пример 2. Синтез аммиака протекает согласно уравнению:
- •10. Соли, кислоты, основания с точки зрения электролитической диссоцации. Их состав и свойства. Амфотерные гидроксиды. Особенности амфотерных гидроксидов.
- •11. Химическая связь и валентность.
- •12. Ионная химическая связь. Образование молекулы NaCl. Свойства ионных соединений.
- •13. Ковалентная связь. Строение h2 и Cl2. Образование молекулы хлороводорода согласно методу валентных связей.
- •2.3.3. Основные положения метода валентных связей
- •14. Растворы. Физическая и химическая теории растворов. Тепловые эффекты при растворении.
- •6.2. Процесс образования растворов. Тепловые эффекты при растворении
- •15. Растворы. Концентрация растворов и способы ее выражения. Дайте определение нормальной, молярной и процентной концентрации.
- •16. Ионной произведение воды. Водородный показатель растворов.
- •17. Гидролиз солей. Основные типы гидролизы солей.
- •18. Какие из перечисленных солей подвергаются гидролизу: k2so4, MgCl2, kcn, NaNo3. Составьте возможные уравнения гидролиза (первую ступень).
- •19. Основные положения теории электрической диссоциации. Степень и константа диссоциации. Сильные и слабые электролиты.
- •20. Окислительно – восстановительные реакции. Какие вещества называются окислителями, восстановителями.
- •1. Окисление – процесс отдачи электронов атомам, молекулой или ионом. Степень
- •2. Восстановление – процесс присоединения электронов атомом, молекулой или ионом.
- •21. Что называется процессом окисления и процессом восстановления. Составьте электронные уравнения процессов, происходящих при следующих превращениях:
- •Окислительно-восстановительная реакция между водородом и фтором
- •Окисление, восстановление
- •22.Составьте схему электронного баланса и расставьте коэффициенты в овр:
- •23. Типы овр: межмолекулярные., внутримолекулярные, диспропорционирования. К какому типу относится данные реакции:
- •24. Химические свойства металлов. Отношение металлов к воде. Какие металлы будут взаимодействовать с водой:Na,Cu,Fe. Напишите уравнения реакции.
- •3) Эта реакция невозможна. Хотя в присутствии кислорода медь окисляется во влажной атмосфере (бронзовые памятники зеленеют)
- •25.Отношение металлов к соляной кислоте:Fe, Ag, Mg
- •26 Отношение к разбавленной серной кислоте.
- •Разбавленная серная кислота
- •2) Вытесняют водород из разбавленной серной кислоты. Мы видим пузырьки водорода при добавлении разбавленной серной кислоты в пробирку с цинком.
- •3) Cеребро стоит в ряду напряжений после водорода – поэтому разбавленная серная кислота не действует на серебро
- •27 Отношение к концентрированной серной кислоте
- •1) Медь - менее активный металл. При взаимодействии с концентрированно серной кислотой восстанавливает ее до сернистого газа.
- •28 Отношение к разбавленной азотной кислоте: магния, меди, золота
- •29 Отношение к концентрированной азотной кислоте: серебра, алюминия, кальция Концентрированная азотная кислота
- •Примеры
- •30 Отношение металлов к щелочам.
- •31 Взаимодействие металлов с солями
- •31 Электродные процессы.Понятия об электродном потенциале. Водородный электрод. Измерение электродных потенциалов.
- •35Что называется электролизом? Анодные и катодные процессы при электролизе на примере раствора нитрата натрия с нерастворимым анодом.
- •36 Напишите уравнение процессов, происходящих при электролизе водного раствора хлорида железа нерастворимым анодом
- •37 Электролиз расплавов. Напишите уравнение процессов, происходящих при электролизе расплава хлорида калия.
- •38 Законы фарадея. Математическое выражение этих законов. Применение электролиза в промышленности
- •39 В какой последовательности разряжаются ионы на катоде при электролизе смеси расплавов солей:HgCl2, PbCl2, kCl
- •40 Cтроение атома. Протонно- электронная модель атомного ядра
- •41 Квантовые характеристики состояния электрона в атоме
- •42Правило Клечковсвого на примере заполнения электронами энергетических уровней и подуровней в атоме элемента калия.
- •Решение
- •43 Правило Клечковского на примере элемента скандия. К какому семейству относится данный элемент.
- •44Порядок заполнения электронами энергетических ячеек.Составвьте электрон-графическую формулу углерода, согласно правилу Гунда.
- •45 Дайте определение коррозии металлов. Основные признаки коррозии. Типы коррозии. Химическая коррозия, газовая, жидкостная.
- •Классификация видов коррозии
- •Коррозия неметаллических материалов
- •Коррозия металлов
- •Химическая коррозия
- •Электрохимическая коррозия
- •Борьба с коррозией
- •Цинкование
- •Защита металлов от коррозии
- •Коррозионная стойкость
- •Электрохимическая защита от коррозии
- •Межкристаллитная коррозия
- •46 Электрохимическая коррозия. Коррозия технического железа в кислой среде. Составьте схему микрогальванического элемента при коррозии
- •48 Железо, покрытое оловом. Какое это покрытие? Напишите схему коррозии металла при нарушении покрытия во влажной среде на воздухе.
- •49 Стальная конструкция, покрытая цинком. Какое это покрытие? Напишите схему коррозии металла в случае нарушения покрытия во влажном воздухе. Какой тип покрытия?
- •50 Методы электрохимической защиты: катодная защита – принцип метода; анодная защита (протекторная)
- •51 Защита металлов от коррозии: металлические и неметаллические покрытия
- •Металлические защитные покрытия хром, никель, цинк, кадмий, алюминий, олово и др.
- •Неметаллические защитные покрытия лаки, краски, эмали, фенолформальдегидные смолы и др
- •54 Химия выжущих веществ. Коррозия цементного камня.
6.2. Процесс образования растворов. Тепловые эффекты при растворении
Растворение - сложный физико-химический процесс. В зависимости от природы растворителя и растворенного вещества преобладает либо одна, либо другая его составляющая. Чаще физический процесс предшествует химическому. Д.И. Менделеев, обосновывая теорию растворов, впервые выдвинул идею о существовании в них определенных химических соединений.
При химическом растворении образование раствора происходит в результате реакции между растворенным веществом и растворителем:
SO3 + H2O = H2SO4
Часто растворяемые вещества в ходе реакции переходят в другие соединения, поэтому в итоге образуется раствор продуктов реакции:
2Na + 2H2O = 2NaOH(р) + H2
Cl2 + H2O = HOCl + HCl
Иногда сам растворитель (в данном случае - вода) непосредственно не участвует в реакции:
Mg + 2HCl = MgCl2(р) + H2
Однако, на практике растворы H2SO4, NaOH, MgCl2 и т.д. готовят либо разбавлением более концентрированных растворов указанных веществ (растворы H2SO4), либо непосредственным растворением NaOH(т), MgCl2(т) в растворителе.
Подобные процессы приводят к образованию растворов молекулярного или ионного типа. Если растворение не сопровождается такой выраженной реакцией, как при химическом растворении, то процесс ограничивается взаимодействием молекул растворяемого вещества с молекулами растворителя, который называют сольватацией. Продукты взаимодействия называют сольватами (от лат. solvere - растворять). Если в качестве растворителя используют воду, то процесс называют гидратацией, а продукты взаимодействия - гидратами.
Образование сольватов возможно различными путями в зависимости от природы растворителя и растворяемого вещества. Так, если растворенное вещество имеет ионную структуру, то молекулы растворителя удерживаются у образовавшегося иона за счет электростатических сил взаимодействия. В обычных условиях способность иона гидратироваться зависит от его природы, заряда, размера, строения электронной оболочки и концентрации раствора. Гидратирующая способность ионов падает в ряду:
Al3+ > Cr3+ > Be2+ > Cd2+ > Zn2+ > Mg2+ > Na+ .
Гидратация изменяет как свойства растворителя, так и свойства иона. Например, гидратация снижает электрохимическую подвижность (направленное перемещение под действием электрического тока) ионов. Так, электропроводность расплава LiCl выше электропроводности CsCl. В водных же растворах из-за большей гидратирующей способности Li+ по сравнению с Cs+электропроводность указанных солей имеет противоположный характер.
Под влиянием гидратации деформируются электронные оболочки ионов, что в большинстве случаев приводит к изменению их окраски:
Cu2+ - белый, [Cu(H2O)4]2+ - голубой,
Co2+ - синий, [Co(H2O)6]2+ - розовый,
Ni2+ - желтый, [Ni(H2O)6]2+ - зеленый и т.п.
Гидратированные ионы обладают большей термодинамической устойчивостью, чем ионы, лишенные гидратной оболочки. Часто образующиеся гидраты могут быть настолько прочны, что их можно выделить из раствора в кристаллическом состоянии. Такие кристаллы, содержащие в связанном виде молекулы воды, называют кристаллогидратами (в общем случае - кристаллосольватами), а входящую в их состав воду - кристаллизационной. Например: CuSO4·5H2O, Na2SO4·10H2O, Ni(NO3)2·6H2O и др. Кристаллогидраты сохраняют окраску, характерную для соответствующих растворов. Это служит доказательством существования в растворе аналогичных гидратных комплексов.
При растворении соединений с ионной кристаллической решеткой, например, NaCl в воде процесс гидратации начинается с ориентации диполей воды относительно ионов кристаллической решетки. Когда энергия связи между гидратируемым ионом и молекулами воды становится больше, чем энергия связи между ионами в решетке кристалла, гидратированный ион переходит из кристалла в раствор и происходит постепенное разрушение всего кристалла.
С термодинамической точки зрения вещество может растворяться в растворителе (ж) самопроизвольно при постоянном давлении и объеме, равномерно распределяясь в нем, если в результате этого процесса свободная энергия системы уменьшается:
G = ( H - T· S) < 0
Если вещество переходит из упорядоченного (ж) или (т) состояния в раствор, в котором термодинамическая вероятность состояния его частиц значительно больше, то энтропия системы увеличивается: S>0. Это способствует растворению вещества. Вклад энтропийного фактора будет особенно ощутим при повышенных температурах, поэтому растворимость твердых и жидких веществ при нагревании, как правило, увеличивается (рис.6.1.).