
- •Нейрофизиология
- •Онтогенез нервной системы.
- •Особенности строения головного и спинного мозга у новорожденного. Развитие цнс в детском возрасте.
- •Строение и функции продолговатого мозга, моста. Ретикулярная формация.
- •Строение и функции мозжечка, ножек мозга, четверохолмия.
- •Строение и функции промежуточного мозга.
- •Строение и функции больших полушарий головного мозга. Подкорковые узлы. Функции долей больших полушарий.
- •Цитоархитектоника коры больших полушарий. Первичные, вторичные и третичные корковые зоны.
- •Три блока мозга (по а.Р. Лурия). Их локализация, функции, принципы совместной работы.
- •Функциональные системы п.К. Анохина. Принцип гетерохронности развития. Внутрисистемная и межсистемная гетерохрония.
- •Строение и функции спинного мозга. Зоны сегментарной иннервации.
- •Простейшая спинномозговая рефлекторная дуга. Важнейшие рефлексы, замыкающиеся в спинном мозге.
- •Роль вегетативной нервной системы в регуляции гомеостаза и адаптации к среде.
- •Строение, функции и симптомы поражения симпатического отдела вегетативной нервной системы.
- •Строение, функции и симптомы поражения парасимпатического отдела вегетативной нервной системы.
- •Методы исследования вегетативной нервной системы.
- •Строение и функции нейрона.
- •Состояние нейронной мембраны в покое. Факторы, поддерживающие потенциал покоя. См. №17.
- •Реакция нейрона на повторное раздражение. Характеристика рефрактерного периода и периода экзальтации.
- •Миелиновая оболочка. Особенности проведения возбуждения по мякотным и безмякотным волокнам.
- •Синапсы: классификация и строение.
- •Механизмы передачи нервного импульса через синапс. См.№23
- •История развития взглядов на высшую нервную деятельность. Основные источники знаний о функциональной организации головного мозга.
- •Учение и.П. Павлова об условном и безусловном рефлексе. См.№28
- •Сравнительная характеристика условного и безусловного рефлекса. Факторы, необходимые для формирования условного рефлекса.
- •Правила выработки условных рефлексов
- •Правила выработки условных рефлексов
- •Условные рефлексы второго, третьего и более высоких порядков.
- •Торможение в коре головного мозга. Торможение условных рефлексов
- •Безусловное торможение
- •Условное торможение (внутреннее)
- •Запредельное торможение
- •Безусловное торможение. Сущность внешнего и запредельного торможения. См. № 29
- •Условное торможение, его виды. См. № 29
- •Первая и вторая сигнальные системы.
- •Эволюционное значение второй сигнальной системы. Условно-рефлекторная природа второй сигнальной системы. См. № 32
- •Сон, его виды. Современные представления о природе сна.
- •Характеристика быстрого сна, его физиологическое значение.
- •Нарушения сна.
- •Виды памяти. Характеристика сенсорной, кратковременной и долговременной памяти.
- •Механизмы памяти.См №37
- •Физиологическая сущность стресса.
Состояние нейронной мембраны в покое. Факторы, поддерживающие потенциал покоя. См. №17.
Электрические процессы в нервной клетке при ее возбуждении. Ионные механизмы потенциала действия.
Электрические процессы в нервных клетках включают в себя наличие постоянного потенциала покоя и медленных и быстрых изменений этого потенциала при возбуждении. Потенциал покоя является мембранным потенциалом нервной клетки и обусловлен неравномерным распределением электролитов по обе стороны клеточной мембраны. Внутри нервной клетки содержится большое количество органических анионов и катионов; в наружной среде катионов К+ примерно в 40 раз меньше, но высока концентрация катионов Na+, анионов Сl~. Крупные органические анионы не проникают через мембрану, а ионы К+, легко проникающие через мембрану, по закону диффузии перемещаются из области более высокой концентрации наружу. Это приводит к избытку положительных зарядов на наружной поверхности и преобладанию отрицательных зарядов на внутренней поверхности мембраны. Внутренняя поверхность мембраны заряжается отрицательно по отношению к наружной, при этом возникает электрическая сила, обеспечивающая обратное движение части ионов К+ внутрь клетки, и устанавливается определенное равновесие, при котором суммарный поток ионов через мембрану будет равен нулю. Разность потенциалов между двумя сторонами мембраны при таком равновесии определяет величину мембранного потенциала. Наряду с потоками ионов К+, являющихся основными факторами мембранного потенциала, через мембрану нервной клетки в значительно меньшем количестве движутся ионы Nа+, Са++, Сl~. Они проходят через двойной липидный слой мембраны по своим специальным для каждого вида ионов каналам, открывание и закрывание которых связано с изменением величины мембранного потенциала.
Для создания разницы ионных концентраций и восполнения потерь ионов в мембране нервной клетки действует система мембранного насоса, осуществляющего активный транспорт ионов против градиента концентрации и использующего для этого энергию нейронного метаболизма. Наиболее существен натрий-калиевый насос, возвращающий К+ внутрь клетки и выводящий из нее Nа+. На внутренней стороне мембраны Nа+ соединяется с молекулой переносчика; образованный комплекс ион-переносчик проходит через мембрану; на наружной поверхности комплекс распадается, высвобождая ион Nа+ и соединяясь с ионом К+, транспортирует его внутрь. Источником энергии для работы насоса служит расщепление АТФ ферментом АТФ-азой, выполняющим функцию переносчика.
Поскольку соотношение количества переносимых насосом Nа+ и К1 неодинаково, то насос не только поддерживает разницу ионных концентраций по обе стороны мембраны, но и участвует в формировании потенциала покоя, является электрогенным. Таким образом, мембранный потенциал создается в результате работы пассивных и активных механизмов, соотношение которых у разных нейронов неодинаково. Поэтому у различных нейронов величина мембранного потенциала колеблется от —80 до —40 мв, она в значительной степени зависит от особенностей его деятельности и функционального состояния. При уменьшении величины мембранного потенциала покоя (деполяризации) возбудимость возрастает, при увеличении мембранного потенциала (гиперполяризации) возбудимость снижается. Возбуждение нервной клетки связано с развитием потенциала действия. Потенциал действия, или нервный импульс, представляет собой кратковременное, длящееся миллисекунды изменение мембранного потенциала, при котором уменьшается его величина, доходит до нуля и затем потенциал меняет знак. В момент пика потенциала действия мембрана становится заряженной внутри не отрицательно, а положительно (4-50 мв); амплитуда потенциала действия составляет 110-130 мв.
Перезарядка мембраны при возбуждении происходит из-за быстрого и значительного повышения мембранной проницаемости для Nа+, вследствие чего большое количество ионов Nа+ проникает с наружной на внутреннюю сторону мембраны и создает здесь избыток положительных зарядов Восходящая фаза потенциала действия обусловлена избирательным повышением проницаемости мембраны для Nа+. Раскрытие натриевых каналов связано с уменьшением мембранного потенциала и происходит со все возрастающей интенсивностью — лавинообразно, так как переход Nа+ на внутреннюю поверхность усиливает деполяризацию и приводит к раскрытию новых натриевых каналов. Нисходящая фаза потенциала действия связана с инактивацией натриевых каналов и повышением проницаемости для К+, так как калиевые каналы раскрываются позже натриевых.
Усиленный поток К+ наружу приводит к восстановлению мембранного потенциала до величины потенциала покоя. В телах многих нейронов потенциал действия связан и с входящим током Са++, отличающимся большей продолжительностью. Вход Са++ внутрь клетки во время потенциала действия является эффективным механизмом повышения внутриклеточной концентрации свободного Са++, который запускает или участвует в работе многих метаболических процессов. Во время возбуждения значительно усиливается работа натрий-калиевого насоса, активируемая повышением концентрации Ма+ на внутренней поверхности мембраны. Его деятельность способствует восстановлению потенциала покоя. Потенциал действия обладает порогом, при котором деполяризация достигает критического уровня и раскрываются все натриевые каналы мембраны. При подпороговых воздействиях раскрывается лишь часть натриевых каналов, перезарядка мембраны не происходит, возникает местное возбуждение. Вследствие того, что при потенциале действия раскрываются все натриевые каналы, его амплитуда постоянна и не зависит от силы раздражения; с этим связана и невосприимчивость к новому раздражению. Потенциалы действия способны быстро и надежно распространяться по мембране тела и аксона нервной клетки. Способность к распространению возбуждения связана с тем, что во время потенциала действия происходит изменение знака заряда в возбужденном участке мембраны. Между ним и невозбужденными соседними участками мембраны возникают локальные электрические токи, под действием которых происходит деполяризация новых соседних участков, что приводит к формированию в них потенциала действия. Далее развиваются локальные токи между новым участком, охваченным возбуждением, и следующими невозбужденными участками; и так возбуждение активно распространяется вдоль всей немиелинизированной мембраны. Чем больше диаметр волокна, тем скорость распространения возбуждения
У позвоночных большинство аксонов покрыто миелиновой оболочкой, периодически прерывающейся на перехватах Ранвье. В перехватах существует высокая плотность потенциалзависимых натриевых каналов (12 000 на 1 мм2), здесь генерируется потенциал действия, а на участках между перехватами возможно электротоническое формирование локальных токов, вызывающих потенциал действия лишь на следующем перехвате. Благодаря этому происходит скачкообразное (сальтаторное) распространение потенциала действия со значительно большей скоростью, чем по немиелинизированной мембране. Разновидность активного проведения возбуждения выявлена и на определенных участках дендритов некоторых нейронов.