Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
stepanov все.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
630.78 Кб
Скачать
  1. Классификация локальных вычислительных сетей (ЛВС) и их характеристики.

Локальная сеть (локальная вычислительная сеть, ЛВС) – это комплекс оборудования и программного обеспечения, обеспечивающий передачу, хранение и обработку информации.

Классификация ЛВС: 1. По расстоянию между узлами (охвату географической территории).Различают местные (ограниченные зданием или группой зданий), территориальные или региональные (действующие в пределах ограниченной территории но охватывающие значительное географическое пространство – город, область, страну) и глобальные(связывающие узлы, находящиеся в различных регионах и точках мира) 2. Классификация ЛВС по способу управления подразделяет их на сети с выделенными серверами, одноранговые сети (все узлы сети равноправны) и терминальные (сети использующие т.н. сетецентрическую концепцию построения, при которой оборудование конечного пользователя предоставляет только функции ввода-вывода, а все запросы на обработку и получение информации выполняет сетевое ядро). 3. Классификация ЛВС по топологии. Этот признак определяет способы соединения узлов сети и обмена информацией между ними. Различают широковещательные, последовательностные и смешанные топологии. К широковещательным топологиям относят архитектуру «шина» или «магистраль» (все узлы присоединяются к магистральному кабельному сегменту, данные передаваемые одной станцией доступны для всех); «звезда» - каждая рабочая станция связана с центральным узлом отдельным каналом, центральный узел осуществляет трансляцию данных одного узла к остальным. К последовательностным топологиям относят архитектуру «кольцо» - каждый узел «слышит» только данные от двух соседних узлов. При необходимости осуществляет их дальнейшую трансляцию. 4. По используемой физической среде. В настоящее время в этом способе классификации выделяют проводные кабельные сети, оптоволоконные кабельные сети и беспроводные сети. 5. По методу доступа. Различают случайные и детерминированные методы доступа рабочих станций к среде передачи данных. Наиболее известными из них являются метод множественного доступа с контролем несущей и обнаружением конфликтов (Carrier Sense Multiple Access /Collision Detection CSMA/CD), который регламентируется стандартом IEEE 802.3 (Ethernet) и метод передачи маркера – стандарт IEEE 802.5 (Token Ring). 

Основные характеристики ЛВС: территориальная протяжённость сети; максимальная скорость передачи данных; максимально возможное расстояние между рабочими станциями в сети; топология сети; максимальное число каналов передачи данных; условия надёжной работы сети.

  1. Топология ЛВС.

А) Топология ЛВС шина или магистраль. Это такой вид сетевого объединения компьютеров при котором имеется один кабель к которому подключены все сетевые ресурсы. К концам кабеля подключены так называемые заглушки (терминаторы), для предотвращения отражения сигнала.

Недостатки Разнообразные неполадки в сети такого типа (обрыв кабеля, выход из строя терминатора) выводят из строя работу всей сети; Сложное выявление неисправностей; При добавлении новых компьютеров падает производительность сети.

Примерами использования топологии шина является сеть 10Base–5 (соединение компьютеров толстым коаксиальным кабелем) и 10Base–2 (соединение компьютеров тонким коаксиальным кабелем).

Б) Топология ЛВС звезда. Это такая топология сети в которой компьютеры подключены к центральному узлу (хаб или свич) который объединяет их в общий сегмент (часть) сети.

Недостатки Повреждение центрального узла (хаб или свич) сделает сеть неработоспособной (или сегмента сети) в целом; для монтажа сети часто необходимо больше кабеля, чем для большинства других топологий; число компьютеров в сети (или сегменте сети) ограничено количеством портов в центральном узле (хаб или свич).

Примером использования топологии звезда являются сети в которых носителем выступает кабель витая пара. UTP категория 3 или 5.

В) Топология ЛВС кольцо. Это такая топология сети в которой компьютер соединен исключительно с двумя другими: от одного он лишь получает информацию, а другому только передает.

Недостатки Повреждение одного компьютера, и другие неисправности (обрыв кабеля и т. д. и т. п.), влияют на работоспособности всей сети; Трудность конфигурирования и настройки; Трудность при поиске неисправностей.

  1. ЛВС с децентрализованным управлением.

  • В сет В сетях с децентрализованным управлением нет единого центра управления взаимодействием рабочих станций и единого компьютера для хранения данных. Одноранговая сеть – это ЛВС равноправных компьютеров, каждый из которых имеет уникальное имя и, как правило, пароль для входа в него в момент загрузки ОС. Равноправность ПК означает, что администратор каждого компьютера в сети может преобразовать свой локальный ресурс в разделяемый и устанавливать права доступа к нему и пароли. Он же отвечает за сохранность или работоспособность этого ресурса. Локальный ресурс - ресурс, доступный только с ПК, на котором он находится. Ресурс ПК, доступный для других компьютеров, называется разделяемым или совместно используемым. Таким образом, одноранговая сеть - это ЛВС, в которой каждая рабочая станция может разделить все или некоторые из ее ресурсов с другими рабочими станциями сети. Но отсутствие выделенного сервера не позволяет администратору централизовано управлять всеми ресурсами одноранговой сети.

  • Достоинства одноранговой ЛВС:

  • · низкая стоимость;

  • · высокая надежность.

  • Недостатки:

  • · работа ЛВС эффективна только при количестве одновременно работающих станций не более 10;

  • · слабая защита информации;

  • · сложность обновления и изменения ПО рабочих станций.

  1. ЛВС с централизованным управлением.

В сетях с централизованным управлением сервер обеспечивает взаимодействия между рабочими станциями, выполняет функции хранения данных общего пользования, организует доступ к этим данным и передает данные клиенту. Клиент обрабатывает полученные данные и предоставляет результаты обработки пользователю. Необходимо отметить, что обработка данных может осуществляться и на сервере. Сети с централизованным управлением, в которых сервер предназначен только хранения и выдачи клиентам информации по запросам, называются сетями с выделенным файл-сервером. Системы, в которых на сервере наряду с хранением осуществляется и обработка информации, называются системами "клиент-сервер". Необходимо отметить, что в серверных сетях клиенту непосредственно доступны только ресурсы серверов. Но рабочие станции, входящие в ЛВС с централизованным управлением, могут одновременно организовать между собой одноранговую сеть со всеми ее возможностями.

Программное обеспечение, управляющее работой ЛВС с централизованным управлением, состоит из двух частей:

· сетевой операционной системы, устанавливаемой на сервере;

· программного обеспечения на рабочей станции, представляющего набор программ, работающих под управлением операционной системы, которая установлена на рабочей станции.

  • Достоинства:

  • · выше скорость обработки данных;

  • · обладает надежной системой защиты информации и обеспечения секретности;

  • · проще в управлении по сравнению с одноранговыми сетями.

  • · Недостатки:

  • · сеть дороже из-за выделенного сервера;

  • · менее гибкая по сравнению с равноправной сетью.

  1. Глобальные вычислительные сети (ГВС) и их характеристика.

Глобальная вычислительная сетьГВС представляет собой компьютерную сеть, охватывающую большие территории и включающую в себя десятки и сотни тысяч компьютеров.

ГВС служат для объединения разрозненных сетей так, чтобы пользователи и компьютеры, где бы они ни находились, могли взаимодействовать со всеми остальными участниками глобальной сети.

Некоторые ГВС построены исключительно для частных организаций, другие являются средством коммуникации корпоративных ЛВС с сетью Интернет или посредством Интернет с удалёнными сетями, входящими в состав корпоративных. Чаще всего ГВС опирается на выделенные линии, на одном конце которых маршрутизатор подключается к ЛВС, а на другом концентратор связывается с остальными частями ГВС. Основными используемыми протоколами являются TCP/IPSONET/SDHMPLSATM и Frame relay. Ранее был широко распространён протоколX.25, который может по праву считаться прародителем Frame relay.

Описание

Совмещают компьютеры, рассредоточенные на расстоянии сотен и тысяч километров. Часто используются уже существующие не очень качественные линии связи. Более низкие, чем в локальных сетях, скорости передачи данных (десятки килобит в секунду) ограничивают набор надаваемых услуг передачей файлов, преимущественно не в оперативном, а в фоновом режиме, с использованием электронной почты. Для стойкой передачи дискретных данных применяются более сложные методы и оборудование, чем в локальных сетях.

  1. Основные характеристики ГВС и ЛВС.

Протяженность, качество и способ прокладки линий связи

По определению локальные сети отличаются от глобальных небольшим расстоянием между узлами сети. Поэтому в локальные сети могут себе позволить использовать качественные линии связи: коаксиальные кабели, витая пара, оптоволоконный кабель. Глобальным же сетям ввиду больших расстояний (а иногда просто огромных) такая роскошь не позволительна, поэтому они применяют уже существующие телефонные связи.

Сложность методов передачи и оборудования

Отсюда сразу вытекает следующее отличие: глобальные сети требуют более сложных методов передачи данных и соответствующее оборудование, по сравнению с локальными сетями. Поэтому в глобальных сетях приходится использовать методы, которые сумеют намного повысить надежность и безопасность передачи данных: модуляция, асинхронные методы, сложные методы контрольного суммирования, квитирование и повторные передачи искаженных кадров. Как работают все эти методы, мы будем изучать более подробно, но немного позже.

Скорость обмена данными

Одно из главных отличий локальных сетей от глобальных - высокоскоростные каналы обмена данными между компьютерами, скорость которых (10,16 й 100 Мбит/с) сравнима со скоростями работы устройств и узлов компьютера - дисков, внутренних шин обмена данными и т. п.

За счет этого у пользователя локальной сети, который подключается к какому-то удаленному разделяемому ресурсу (например, диску сервера), складывается впечатление, что он пользуется этим диском, как "своим".

Для глобальных сетей типичны гораздо более низкие скорости передачи данных - 2400,9600,28800,33600 бит/с, 56 й 64 Кбит/с.

Разнообразие услуг

Локальные сети предоставляют, как правило, широкий набор услуг - это различные виды услуг файловой службы, услуги печати, услуги службы передачи факсимильных сообщений, услуги баз данных, электронная почта и другие. Глобальные сети в основном предоставляют только почтовые услуги и иногда файловые услуги с ограниченными возможностями. Например, в глобальных сетях можно осуществлять передачу файлов из публичных архивов удаленных серверов.

Оперативность выполнения запросов

Время прохождения пакета через локальную сеть обычно составляет несколько миллисекунд, время же его передачи через глобальную сеть может достигать нескольких секунд. Низкая скорость передачи данных в глобальных сетях затрудняет реализацию работу служб в режиме on-line. Зато для локальных сетей этот режим вполне обычный.

Разделение каналов

В локальных сетях каналы связи используются, как правило, совместно сразу несколькими узлами сети, а в глобальных сетях - индивидуально.

Использование метода коммутации пакетов

Важная особенность локальных сетей - неравномерное распределение нагрузки. Отношение максимальной нагрузки к средней может составлять 100:1 и даже выше. Такой трафик обычно называют пульсирующим.

Из-за этой особенности трафика в локальных сетях для связи узлов применяется метод коммутации пакетов, чем традиционный для глобальных сетей метод окммутации каналов. Поскольку для пульсирующего трафика он оказывается гораздо более эффективным. Почему? Эффективность в том, что сеть в целом передает в единицу времени больше данных своих абонентов. В глобальных сетях метод коммутации пакетов также используется, но наряду с ним часто применяется и метод коммутации каналов, а также некоммутируемые каналы (наследство от технологий некомпьютерных сетей).

  1. Топология сети Ethernet.

В рамках стандарта Ethernet принято различать несколько типов построения распределенной вычислительной системы, исходя из ее топологической структуры. Фактически можно сказать, что топология локальной сети — это конфигурация кабельных соединений между компьютерами, выполненных по некоему единому принципу. Какая-либо конкретная топология сети выбирается, во-первых, исходя из используемого оборудования, которое, как правило, поддерживает некий строго определенный вариант организации сетевых подключений; во-вторых, на основе имеющихся требований к мобильности, масштабируемости и вычислительной мощности всей системы в целом. В ряде ситуаций возможна организация нескольких подсетей, построенных с использованием различных топологий и связанных впоследствии в единую сеть. В частности, применительно к стандарту Ethernet возможна организация локальных сетей с топологией «общая шина» или «звезда».

Технология построения локальной сети на основе топологии «общая шина» подразумевает последовательное соединение компьютеров в цепочку наподобие «гирлянды» с использованием специальных Т-образных разъемов (Т-коннекторов), подключаемых к соответствующему порту сетевого адаптера каждого из узлов сети. В качестве физической линии передачи данных применяется коаксиальный кабель с пропускной способностью 10 Мбит/с. Оконечности «цепочки», то есть ответвления Т-образных разъемов, к которым не подводится кабель для подсоединения к соседним компьютерам, ограничиваются специальными металлическими колпачками, создающими в сети необходимое сопротивление нагрузки, — они называются заглушками или терминаторами (рис. 3.1).

Рис. 3.1. Конфигурация локальной сети с топологией «общая шина»

Следует отметить, что некогда весьма популярные локальные сети с топологией «общая шина» в настоящее время все больше и больше утрачивают свои позиции. Причина снижения их популярности вполне очевидна. Несмотря на видимую простоту прокладки и монтажа, — а для постройки такой сети необходимы лишь минимальные навыки обращения с пассатижами или паяльником — и относительную мобильность с точки зрения изменения конфигурации всей системы (ведь для того, чтобы переставить сетевой компьютер с места на место, достаточно лишь открутить и закрутить соответствующий разъем), такие сети имеют множество очевидных недостатков. И самый существенный из них — крайне низкая надежность. Достаточно произойти потере контакта в одном из терминаторов или многочисленных Т-коннекторов, что на практике случается достаточно часто, и целый сегмент локальной сети выходит из строя. В такой ситуации все сетевые компьютеры продолжают работать вполне стабильно, но неожиданно перестают «видеть» друг друга, вследствие чего системному администратору приходится последовательно проходить всю сеть, проверяя наличие контакта в разъемах, что занимает порой очень много времени. Именно поэтому топология «общая шина» идеально подходит для создания малой домашней сети «точка—точка», то есть для объединения двух компьютеров, но в случае более сложной и разветвленной сетевой структуры следует поразмыслить о возможности использования иной конфигурации.

Альтернативой топологии «общая шина» в сетях Ethernet является звездообразная конфигурация локальной сети (рис. 3.2).

Рис. 3.2. Конфигурация локальной сети с топологией «звезда»

В этом случае компьютеры соединяются между собой не последовательно, а параллельно, то есть каждый из узлов сети подключается собственным отрезком провода к соответствующему порту некоего устройства, называемого концентратором, или хабом (от англ. hub — центр). В качестве линии передачи данных используется специальный неэкранированный кабель «витая пара» (twisted pair), который обеспечивает соединение со скоростью до 10 Мбит/с. Посредством «витой пары» возможна также организация сети из двух компьютеров по принципу «точка—точка», при этом машины можно подключать друг к другу напрямую, без использования концентратора, однако порядок монтажа контактов в разъемах сетевого шнура в этом случае несколько отличается от стандартного. Преимущества топологии «звезда» по сравнению с «общей шиной» заключаются в более высокой надежности и отказоустойчивости локальной сети, в ней значительно реже возникают «заторы», да и конечное оборудование работает по «витой паре» на порядок быстрее. При этом в случае выхода из строя одного из узлов сети вся остальная система продолжает работать стабильно: полный отказ такой локальной сети происходит только при поломке концентратора. Безусловно, организация сетевой системы на основе топологии «звезда» требует значительно больших финансовых затрат, но они целиком и полностью оправдываются, когда речь заходит о необходимости обеспечить надежную связь между работающими в сети компьютерами.

  1. Уровень управления логическим каналом (LLC).

Протокол LLC обеспечивает для технологий локальных сетей нужное качество услуг транспортной службы, передавая свои кадры либо дейтаграммным способом, либо с помощью процедур с установлением соединения и восстановлением кадров. Протокол LLC занимает уровень между сетевыми протоколами и протоколами уровня MAC. Протоколы сетевого уровня передают через межуровневый интерфейс данные для протокола LLC - свой пакет (например, пакет IP, IPX или NetBEUI), адресную информацию об узле назначения, а также требования к качеству транспортных услуг, которое протокол LLC должен обеспечить. Протокол LLC помещает пакет протокола верхнего уровня в свой кадр, который дополняется необходимыми служебными полями. Далее через межуровневый интерфейс протокол. LLC передает свой кадр вместе с адресной информацией об узле назначения соответствующему протоколу уровня MAC, который упаковывает кадр LLC в свой кадр (например, кадр Ethernet).

В основу протокола LLC положен протокол HDLC (High-level Data Link Control Procedure), являющийся стандартом ISO. Собственно стандарт HDLC представляет собой обобщение нескольких близких стандартов, характерных для различных технологий: протокола LAP-B сетей Х.25 (стандарта, широко распространенного в территориальных сетях), LAP-D, используемого в сетях ISDN, LAP-M, работающего в современных модемах. В спецификации IEEE 802.2 также имеется несколько небольших отличий от стандарта HDLC.

Первоначально в фирменных технологиях подуровень LLC не выделялся в самостоятельный подуровень, да и его функции растворялись в общих функциях протокола канального уровня. Из-за больших различий в функциях протоколов фирменных технологий, которые можно отнести к уровню LLC, на уровне LLC пришлось ввести три типа процедур. Протокол сетевого уровня может обращаться к одной из этих процедур.

  1. Интерфейсные функции LLC.

  2. Типы транспортных услуг, предоставляемых уровнем LLC.

Протокол LLC обеспечивает для технологий локальных сетей нужное качество услуг транспортной службы, передавая свои кадры либо дейтаграммным способом, либо с помощью процедур с установлением соединения и восстановлением кадров. Протокол LLC занимает уровень между сетевыми протоколами и протоколами уровня MAC. Протоколы сетевого уровня передают через межуровневый интерфейс данные для протокола LLC - свой пакет (например, пакет IP, IPX или NetBEUI), адресную информацию об узле назначения, а также требования к качеству транспортных услуг, которое протокол LLC должен обеспечить. Протокол LLC помещает пакет протокола верхнего уровня в свой кадр, который дополняется необходимыми служебными полями. Далее через межуровневый интерфейс протокол. LLC передает свой кадр вместе с адресной информацией об узле назначения соответствующему протоколу уровня MAC, который упаковывает кадр LLC в свой кадр (например, кадр Ethernet).

В основу протокола LLC положен протокол HDLC (High-level Data Link Control Procedure), являющийся стандартом ISO. Собственно стандарт HDLC представляет собой обобщение нескольких близких стандартов, характерных для различных технологий: протокола LAP-B сетей Х.25 (стандарта, широко распространенного в территориальных сетях), LAP-D, используемого в сетях ISDN, LAP-M, работающего в современных модемах. В спецификации IEEE 802.2 также имеется несколько небольших отличий от стандарта HDLC.

Первоначально в фирменных технологиях подуровень LLC не выделялся в самостоятельный подуровень, да и его функции растворялись в общих функциях протокола канального уровня. Из-за больших различий в функциях протоколов фирменных технологий, которые можно отнести к уровню LLC, на уровне LLC пришлось ввести три типа процедур. Протокол сетевого уровня может обращаться к одной из этих процедур.

Три типа процедур уровня LLC

В соответствии со стандартом 802.2 уровень управления логическим каналом LLC предоставляет верхним уровням три типа процедур:

• LLC1 - процедура без установления соединения и без подтверждения;  • LLC2 - процедура с установлением соединения и подтверждением;  • LLC3 - процедура без установления соединения, но с подтверждением.  Этот набор процедур является общим для всех методов доступа к среде, определенных стандартами 802.3 - 802.5, а также стандартом FDDI и стандартом 802.12 на технологию l00VG-AnyLAN.

Процедура без установления соединения и без подтверждения LLC1 дает пользователю средства для передачи данных с минимумом издержек. Это дейтаграммный режим работы. Обычно этот вид процедуры используется, когда такие функции, как восстановление данных после ошибок и упорядочивание данных, выполняются протоколами вышележащих уровней, поэтому нет нужды дублировать их на уровне LLC.

Процедура с установлением соединений и подтверждением LLC2 дает пользователю возможность установить логическое соединение перед началом передачи любого блока данных и, если это требуется, выполнить процедуры восстановления после ошибок и упорядочивание потока этих блоков в рамках установленного соединения. Протокол LLC2 во многом аналогичен протоколам семейства HDLC (LAP-B, LAP-D, LAP-M), которые применяются в глобальных сетях для обеспечения надежной передачи кадров на зашумленных линиях. Протокол LLC2 работает в режиме скользящего окна.

В некоторых случаях (например, при использовании сетей в системах реального времени, управляющих промышленными объектами), когда временные издержки установления логического соединения перед отправкой данных неприемлемы, а подтверждение о корректности приема переданных данных необходимо, базовая процедура без установления соединения и без подтверждения не подходит. Для таких случаев предусмотрена дополнительная процедура, называемая процедурой без установления соединения, но с подтверждением LLC3.

Использование одного из трех режимов работы уровня LLC зависит от стратегии разработчиков конкретного стека протоколов. Например, в стеке TCP/IP уровень LLC всегда работает в режиме LLC1, выполняя простую работу извлечения из кадра и демультиплексирования пакетов различных протоколов - IP, ARP, RARP. Аналогично используется уровень LLC стеком IPX/SPX.

А вот стек Microsoft/IBM, основанный на протоколе NetBIOS/NetBEUI, часто использует режим LLC2. Это происходит тогда, когда сам протокол NetBIOS/NetBEUI должен работать в режиме с восстановлением потерянных и искаженных данных. В этом случае эта работа перепоручается уровню LLC2. Если же протокол NetBIOS/NetBEUI работает в дейтаграммном режиме, то протокол LLC работает в режиме LLC1.

Режим LLC2 используется также стеком протоколов SNA в том случае, когда на нижнем уровне применяется технология Token Ring.

Структура кадров LLC. Процедура с восстановлением кадров LLC2

По своему назначению все кадры уровня LLC (называемые в стандарте 802.2 блоками данных - Protocol Data Unit, PDU) подразделяются на три типа - информационные, управляющие и ненумерованные.

• Информационные кадры (Information) предназначены для передачи информации в процедурах с установлением логического соединения LLC2 и должны обязательно содержать поле информации. В процессе передачи информационных блоков осуществляется их нумерация в режиме скользящего окна.

• Управляющие кадры (Supervisory) предназначены для передачи команд и ответов в процедурах с установлением логического соединения LLC2, в том числе запросов на повторную передачу искаженных информационных блоков.

• Ненумерованные кадры (Unnumbered) предназначены для передачи ненумерованных команд и ответов, выполняющих в процедурах без установления логического соединения передачу информации, идентификацию и тестирование LLC-уровня, а в процедурах с установлением логического соединения LLC2 -установление и разъединение логического соединения, а также информирование об ошибках. Все типы кадров уровня LLC имеют единый формат:

Кадр LLC обрамляется двумя однобайтовыми полями «Флаг», имеющими значение 01111110. Флаги используются на уровне MAC для определения границ кадра LLC. В соответствии с многоуровневой структурой протоколов стандартов IEEE 802, кадр LLC вкладывается в кадр уровня MAC: кадр Ethernet, Token Ring, FDDI и т. д. При этом флаги кадра LLC отбрасываются.

Кадр LLC содержит поле данных и заголовок, который состоит из трех полей:

• адрес точки входа службы назначения (Destination Service Access Point, DSAP);  • адрес точки входа службы источника (Source Service Access Point, SSAP);  • управляющее поле (Control).  Поле данных кадра LLC предназначено для передачи по сети пакетов протоколов вышележащих уровней - сетевых протоколов IP, IPX, AppleTalk, DECnet, в редких случаях - прикладных протоколов, когда те вкладывают свои сообщения непосредственно в кадры канального уровня. Поле данных может отсутствовать в управляющих кадрах и некоторых ненумерованных кадрах.

  1. Уровень управления доступом к среде (МАС).

Беспроводные ЛВС (WLAN) на уровне MAC используют для управления каналами CSMA/CA — это многостанционный доступ с контролем несущей и предотвращением конфликтов. Уровень MAC обеспечивает адресацию протокольных единиц обмена PDU, форматирование циклов (кадров), контроль ошибок, безопасность, регулирование мощности, синхронизацию, разбиение на участки и переформатирование. Различают два режима работы слоя управления доступом MAC: это функция координации пунктов PCF, основанная на приоритетно-опросном принципе, и функция распределенной координации DCF, основанная на ассоциативном доступе. В режиме координации пунктов PCF точка доступа АР может опрашивать множество терминалов в рамках базового набора услуг BSS или в пределах зоны покрытия соты. Однако режим DCF представляет основной метод доступа, поддерживая наилучшую транспортировку данных и соединение равноправных узлов для специальных видов связи. Режимы DCF и PCF могут работать совместно, обеспечивая протокол случайного доступа, похожий на протокол CSMA, оснащенный для избежания конфликтов сообщениями «готовность к передаче» RTS (Request-to-Send) и «готовность к приему» CTS (Clear-to-Send), а также сообщениями подтверждения успешного приема пакета данных — ACK. Такое управление взаимодействием при передаче сообщений между приемопередатчиками TRX называется «квитированием».

  1. Метод случайного доступа к разделяемой среде.

Прием кадра из сети и отправка его в сеть связаны с процедурой доступа к среде передачи данных. В локальных сетях используется разделяемая среда передачи данных, поэтому все протоколы канального уровня локальных сетей включают процедуру доступа к среде, которая и является главной функцией МАС-уровня. Кроме того, МАС-уровень должен согласовать дуплексный режим работы уровня LLC с полудуплексным режимом работы физического уровня. Для этого он буферизует кадры с тем, чтобы при получении доступа к среде, передать их по назначению.

Методы случайного доступа основаны на том, что каждая станция сети пытается получить доступ к среде в тот момент времени, когда ей это становится необходимым. Если среда уже занята, то станция повторяет попытки доступа до тех пор, пока очередная попытка не окажется успешной. Хотя принцип случайного доступа допускает различные реализации, широко используется только метод случайного доступа технологии Ethernet.

  1. Детерминированный доступ к разделяемой среде.

Детерминированный доступ обеспечивает каждой рабочей станции гарантированное время доступа (например, время доступа по расписанию) к среде передачи данных. Случайный доступ основан на равноправности всех станций сети и их возможности в любой момент обратиться к среде с целью передачи данных.

Этот метод основан на использовании кадра специального  формата,  который  обычно  называют  маркером,  или  токеном,  доступа.  Компьютер  имеет  право  пользования  средой  только  тогда,  когда  он  владеет  токеном.  Время  владения  токеном  ограничено,  так  что  после  истечения  этого  срока  компьютер  обязан  передать  токен  другому  компьютеру.  Правило,  определяющее  порядок  передачи  токена  должно  гарантировать  каждому  компьютеру  доступ  к  разделяемой  среде  в  течение  некоторого  фиксированного времени.    Метод  детерминированного  доступа  может  быть  реализован  как  на  основе  распределенного,  так  и  централизованного  подходов.  В  первом  случае  в  сети  нет  узла,  определяющего  очередность  владения  распределенной  средой,  во  втором  –  такой  узел  существует и называется арбитром доступа.  

  1. Этапы передачи кадров между конечными узлами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]