
- •1. Свойства материалов.
- •2. Кристаллическая решетка и основные параметры. Направления и кристаллографические плоскости.
- •3. Дефекты кристаллической решетки.
- •4. Механизм кристаллизации.
- •6. Деформация. Напряженность.
- •7.Прочность, твердость, пластичность и их характеристики.
- •8. Технологические свойства материалов.
- •9. Диаграмма состояния железо-углерод. Область точки эвтектики.
- •10. Диаграмма состояния железо-углерод. Область эвтектоидной точки.
- •11. Примеси в сталях и их влияние на свойства
- •12. Низкоуглеродистые стали.
- •13. Высокоуглеродистые стали.
- •14. Легированные стали.
- •15. Закалка, отжиг, нормализация.
- •16. Химико-термическая обработка: цементация, азотирование.
- •17. Чугуны
- •18. Медь и медные сплавы.
- •19. Алюминий и его сплавы
- •20. Титан и его сплавы.
- •21. Диэлектрические материалы. Виды поляризации.
- •22. Полимерные материалы. Термопластичные пластмассы
- •23. Полимерные материалы. Термореактивные пластмассы
- •24. Стекла. Состав и строение.
- •25. Керамика. Виды, состав и изготовление.
- •26. Полупроводниковые материалы и их свойства.
- •27. Получение полупроводниковых материалов
- •28.Магнитные материалы. Строение и свойства.
- •29. Магнитодиэлектрики и их свойства.
- •30 Припои и флюсы. Высокоомные провода.
- •31.Технология и ее характеристики
- •32 Производственные и технологические процессы.
- •33. Тип производства
- •34 Основные характеристики технологического процесса
- •35 Технологическая подготовка производства
- •36 Технологичность деталей. Показатели технологичности
- •37 Основные этапы проектирования технологического процесса.
- •38, Деформация. Влияние на структуру металла.
- •39, Прокатка. Волочение.
- •40 Горячая и холодная объемная штамповка.
- •Накатка резьб и мелкомодульных зубьев.
- •42. Штамповка: высадка, вырубка, гибка.
- •Штамповка: вытяжка, ударное выдавливание, зачистка.
- •44. Обработка резаньем и ее виды.
- •45. Точение. Основные параметры.
- •46. Шлифование. Область применения.
- •47. Методы создания поверхности с низкой шероховатостью.
- •48 Изготовление деталей из керамики.
- •49. Литье металлов в песчаные формы и по выплавляемым моделям.
- •50. Литье под давлением
- •51. Основные виды электрофизикохимической обработки.
- •52. Электроэрозионная обработка
- •53. Электрополировка. Электроразмерная обработка.
- •54 Ультразвуковая обработка: очистка деталей.
- •56 Плазменная обработка и ее возможности
- •57. Лазерная обработка и ее достоинства
- •58 Электроннолучевая обработка
- •59 Виды подложек и их характеристики
- •60.Технологический процесс получения кремневых подложек: резка, шлифовка.
- •61 Технологический процесс получения кремневых подложек: электрохимическая полировка
- •62. Покрытия и виды покрытий
- •63. Металлические покрытия
- •64. Фотопечать. Фотохимическое изготовление изображений
- •65. Изготовление шкал и шильдиков: гравирование, сеткография
- •66. Элементы свч тракта и их изготовление
- •Свойства материалов.
- •Кристаллическая решетка и основные параметры. Направления и кристаллографические плоскости.
56 Плазменная обработка и ее возможности
В технологии приборостроения, радиоаппаратостроения и металлообработки плазма применяется в виде узконаправленной горячей струи, способной расплавить и испарить практически все материалы.
По конструкции плазматроны разделяются на сепараторы прямого и косвенного действия
Устройство плазмотрона: 1-сопро 2-фольфрамовый электрод 3-ввод плазменного газа 4-изделие 5- канал для подачи присадочного порошка
Для получения плазмы используются дуговой разряд, через который с помощью сопла продувается плазмообразующий газ (аргон, азот, воздух или их смесь). Питание плазматрона осуществляется от мощного электрического источника с напряжением 200–500 В и током 300–400 А. Необходима стабилизация дуги, чтобы горячая струя не замкнулась на сопло и не
расплавила его, а также с целью некоторой фокусировки. Она осуществляется аксиальным потоком газа, либо суженными стенками охлаждаемого сопла.
Плазменная обработка используется в процессах, требующих высокотемпературного концентрированного нагрева: резка, прошивка отверстий, микро- и макросварка, нанесение покрытий, восстановление изношенных деталей, плавка.
Наплавка износостойких покрытий осуществляется с целью повышения эксплуатационных свойств детали.
Применяют порошкообразные материалы со специальными свойствами – высокой твердостью, повышенной износостойкостью, коррозионно- и термостойкостью (оксиды или карбиды бора, вольфрама). Детали получаются с дешевой сердцевиной из конструктивных материалов, а на ответственных участках создаются необходимые свойства.
Напыление. Напыляемый материл нагревается в плазматроне. Температура подложки в зависимости от цели напыления может быть различной. Формируются слои небольшой толщины – от нескольких мкм до одного мм.
Плазменная резка. Достоинства: обрабатываются любые металлы толщиной до 100–150 мм, меньшая ширина реза чем при газовой резке, лучшая поверхность, меньшая зона термических изменений. Скорость: 0,5–1,5 см/с в зависимости от толщины.
57. Лазерная обработка и ее достоинства
Лазерная обработка проводится с помощью остросфокусированного светового луча, излучаемого оптическим квантовым генератором (ОКГ). Излучение ОКГ является узконаправленным и монохроматичным. Угловая расходимость луча для рубина составляет 30΄, для стекла с примесью ниодима – 10΄ ( !!! 10’ = 10 минут = 1градус/60*10 !!!)
Минимальный размер пятна d0, до которого может быть сфокусирован луч ОКГ, достигает значений 1 мкм.
Процесс взаимодействия лазерного излучения с обрабатываемым материалом можно разделить на следующие стадии:
-поглощение света с последующей передачей энергии тепловым колебаниям решетки твердого тела
-нагрев материала без разрушения, включая и плавление
-разрушение материала путем испарения и выброса его расплавленной части
-остывание после окончания воздействия
При помощи лазера производится резка и сверление отверстий.
Для повышения точности и качества формируемых отверстий используется многоимпульсная обработка материала. Она заключается в том, что отверстия получаются в результате воздействия серии коротких импульсов (0,1–0,2 мс), период следования которых значительно больше времени остывания материала. Положительный эффект при многоимпульсной обработке достигается за счет:
-повышении динамической прочности материала при укорочении времени термоудара
-более равномерным по отношению к непрерывной обработке распределением остаточных напряжений по толщине материала
При многоимпульсной обработке глубина отверстий достигает 1–5 мм и может быть в 25 раз больше диаметра.