
- •2. Основное уравнение молекулярно-кинетической теории идеального газа
- •3.Внутренняя энергия идеального газа. Закон равномерного распределения энергии по степеням свободы.
- •4.Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам
- •5.Адиабатический процесс. Уравнение адиабаты. Политропические процессы.
- •6.Круговой процесс и его кпд. Обратимые и необратимые процессы. Цикл карно. Первая и вторая теоремы карно.
- •7.Энтропия. Второе и третье начала термодинамики. Изменение энтропии в процессах идеального газа.
- •8. Термодинамические потенциалы. Химический потенциал системы, энтальпия, свободная энергия гельмгольца, потенциал гиббса.
- •9.Распределение максвелла по скоростям для молекул идеального газа. Опыт штерна
- •Наиболее вероятная скорость
- •Средняя скорость
- •Среднеквадратичная скорость
- •10.Барометрическая формула. Распределение больцмана.
- •11.Явления переноса (закон фика, закон фурье, закон ньютона). Средняя длина свободного пробега молекулы.
- •12.Реальные газы. Уравнение ван-дер-ваальса и его изотермы.
- •13.Внутренняя энергия реального газа. Эффект джоуля - томсона.
- •14.Фазы вещества. Фазовое равновесие и фазовые переходы 1-го и 2-го рода. Фазовые диаграммы состояния вещества. Тройная точка
- •15.Явления на границе жидкости и твёрдого тела. Капиллярный явления.
- •16.Кристаллические и аморфные твердые тела. Строение и симметрия кристаллов.
- •17.Классическая теория теплоемкости твердых тел. Закон дюлонга и пти.
- •18.Типы кристаллических решеток. Виды связей атомов в кристаллах. Модель эйнштейна и модель дебая.
- •19.Электрический заряд. Свойства электрического заряда. Взаимодействие электрических зарядов. Электрическое поле. Закон кулона.
- •20.Напряженность электрического поля. Силовые линии. Принцип суперпозиции. Напряженность поля точечного заряда и системы точечных зарядов.
- •21.Напряженность электрического поля. Силовые линии. Принцип суперпозиции. Напряженность поля точечного заряда и системы точечных зарядов.
- •22.Поток вектора напряженности электрического поля. Эквипотенциальные поверхности. Теорема гаусса для электростатического поля.
- •23.Применение теоремы гаусса к расчету напряженности электрических полей. Электрическое поле равномерно заряженной сферической поверхности и объемно заряженного шара.
- •25.Связь между напряженностью и потенциалом электростатического поля
- •26.Работа по перемещению заряда в электрическом поле. Разность потенциалов.
- •28.Свободные и связанные заряды в веществе. Электрический диполь. Потенциал и напряженность электрического поля на продолжении оси диполя.
- •28.Свободные и связанные заряды в веществе. Электрический диполь. Потенциал и напряженность электрического поля на продолжении оси диполя.
- •30.Типы диэлектриков. Поляризация диэлектриков. Поляризационные заряды. Вектор поляризации. Напряженность электрического поля в диэлектрике. Диэлектрическая восприимчивость.
- •31.Поляризация полярных и неполярных диэлектриков. Поляризуемость молекулы. Диэлектрическая восприимчивость полярных и неполярных диэлектриков. Ионная поляризация.
- •32.Теорема гаусса для диэлектрического поля в диэлектрике. Вектор электрического смещения.
- •33.Условия на границе двух однородных изотропных диэлектриков. Вектор электрического смещения. Относительная диэлектрическая проницаемость.
- •34.Спонтанная поляризация кристаллических диэлектриков. Сегнетоэлектрики. Пироэлектрики. Пьезоэлектрики.
- •36.Электростатическое поле внутри заряженного проводника и вблизи его поверхности. Проводники во внешнем электростатическом поле. Электроемкость уединенного проводника.
- •37.Конденсаторы. Типы конденсаторов. Соединение конденсаторов. Емкость плоского конденсатора.
- •38.Энергия заряженных проводника и конденсатора энергия электрического поля. Объемная плотность энергии.
- •39.Электрический ток проводимости в металлах, его характеристики и условия существования. Сторонние силы. Электродвижущая сила и напряжение.
- •40.Сопротивление проводников. Закон ома для однородного и неоднородного участков цепи, для замкнутой цепи. Правила кирхгофа.
- •41.Работа и мощность тока. Закон джоуля-ленца в интегральной и дифференциальной формах.
- •42. Основы классической электронной теории электропроводности металлов. Удельная электропроводность. Подвижносъ носителей тока.
- •43.Закон джоуля-ленца, закон видемана-франца и закон ома на основе классической теории электропроводности
- •44.Электрический ток в жидкостях и газах. Законы фарадея для электролиза. Ионизация молекул газов. Электрический ток в газах. Газовые разряды. Электропроводность газов. Плазма.
- •45. Электрический ток в вакууме. Работа выхода электронов из металла. Контактная разность потенциалов. Термоэлектродвижущая сила. Эффекты пельтье и томсона.
- •46. Электрический ток в вакууме. Электронная эмиссия. Виды эмиссий и их применение. Формула
17.Классическая теория теплоемкости твердых тел. Закон дюлонга и пти.
В основе классической теории теплоемкости твердых тел лежит закон равномерного распределения энергии по степеням свободы. Однородное твердое тело рассматривается как система независимых друг от друга частиц, имеющих три степени свободы и совершающих тепловые колебания с одинаковой частотой.
Причины расхождения с опытом классической теории теплоемкости твердых тел состоят в ограниченности используемого закона равномерного распределения энергии по степеням свободы и непригодности его в области низких температур, где среднюю энергию колеблющихся частиц в кристаллической решетке необходимо вычислять по законам квантовой механики.
Закон Дюлонга-Пти (Закон постоянства теплоёмкости) — эмпирический закон, согласно которому молярная теплоёмкость твёрдых тел при комнатной температуре близка к 3R
где R — универсальная газовая постоянная.
18.Типы кристаллических решеток. Виды связей атомов в кристаллах. Модель эйнштейна и модель дебая.
Твердые вещества, как правило, имеют кристаллическое строение. Оно характеризуется правильным расположением частиц в строго определенных точках пространства. При мысленном соединении этих точек пересекающимися прямыми линиями образуется пространственный каркас, который называют кристаллической решеткой.
Точки, в которых размещены частицы, называются узлами кристаллической решетки. В узлах воображаемой решетки могут находиться ионы, атомы или молекулы. Они совершают колебательные движения. С повышением температуры амплитуда колебаний возрастает, что проявляется в тепловом расширении тел.
В зависимости от вида частиц и характера связи между ними различают три типа кристаллических решеток: ионные, атомные, молекулярные
Кристаллические решетки, состоящие из ионов, называются ионными. Их образуют вещества с ионной связью.
Число ближайших соседних частиц, вплотную примыкающих к данной частице в кристалле или в отдельной молекуле, называется координационным числом.
Связи между ионами в таком кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки и малолетучи.
Кристаллические решетки, в узлах которых находятся отдельные атомы, называются атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями.
Кристаллические решетки, состоящие из молекул (полярных и неполярных), называются молекулярными.
Молекулы в таких решетках соединены между собой сравнительно слабыми межмолекулярными силами. Поэтому вещества с молекулярной решеткой имеют малую твердость и низкие температуры плавления, нерастворимы или малорастворимы в воде, их растворы почти не проводят электрический ток. Число неорганических веществ с молекулярной решеткой невелико.В зависимости от природы частиц и от характера сил взаимодействия различают четыре вида химической связи в кристаллах: ковалентную, ионную, металлическую и молекулярную.
Ковалентная связь (атомная связь, гомеополярная связь) — химическая связь, образованная перекрытием (обобществлением) парывалентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.
Ионная связь — очень прочная химическая связь, образующаяся между атомами с большой разностью электроотрицательностей, при которой общаяэлектронная пара полностью переходит к атому с большей электроотрицательностью.Это притяжение ионов как разноименно заряженных тел.
Металлическая связь — это одновременное существование положительно заряженных атомов и свободного электронного газа.
В узлах кристаллической решётки помещаются определённым образом ориентированные молекулы. Силы связи между молекулами в кристалле имеют ту же природу, что и силы притяжения между молекулами, приводящие к отклонению газов от идеальности.
Для кристаллов с молекулярными связями характерны низкие температуры плавления и высокая сжимаемость
В модели
Эйнштейна считают, что атомы
колеблются независимо друг от друга и
что частоты колебаний всех атомов
одинаковы. В таком случае для подсчета
внутренней энергии кристалла,
содержащего
атомов,
достаточно рассмотреть один осциллятор,
а затем домножить результат на
-
число осцилляторов. Пусть каждый
осциллятор имеет частоту
.
Средняя энергия, запасенная в таком
осцилляторе, вычисляется с использованием
распределения Бозе-Эйнштейна
где
-
среднее число квантов энергии, "запасенных"
в осцилляторе.
модель
Дебая —
метод. для оценки фононного вклада
в теплоёмкостьтвёрдых
тел. Модель Дебая рассматривает
колебания кристаллической
решётки как
газ квазичастиц — фононов. Эта модель
правильно предсказывает теплоёмкость
при низких температурах, которая,
согласно закону
Дебая,
пропорциональна
.
В пределе высоких температуртеплоёмкость стремится
к 3R, согласно закону
Дюлонга — Пти.