
- •2. Основное уравнение молекулярно-кинетической теории идеального газа
- •3.Внутренняя энергия идеального газа. Закон равномерного распределения энергии по степеням свободы.
- •4.Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам
- •5.Адиабатический процесс. Уравнение адиабаты. Политропические процессы.
- •6.Круговой процесс и его кпд. Обратимые и необратимые процессы. Цикл карно. Первая и вторая теоремы карно.
- •7.Энтропия. Второе и третье начала термодинамики. Изменение энтропии в процессах идеального газа.
- •8. Термодинамические потенциалы. Химический потенциал системы, энтальпия, свободная энергия гельмгольца, потенциал гиббса.
- •9.Распределение максвелла по скоростям для молекул идеального газа. Опыт штерна
- •Наиболее вероятная скорость
- •Средняя скорость
- •Среднеквадратичная скорость
- •10.Барометрическая формула. Распределение больцмана.
- •11.Явления переноса (закон фика, закон фурье, закон ньютона). Средняя длина свободного пробега молекулы.
- •12.Реальные газы. Уравнение ван-дер-ваальса и его изотермы.
- •13.Внутренняя энергия реального газа. Эффект джоуля - томсона.
- •14.Фазы вещества. Фазовое равновесие и фазовые переходы 1-го и 2-го рода. Фазовые диаграммы состояния вещества. Тройная точка
- •15.Явления на границе жидкости и твёрдого тела. Капиллярный явления.
- •16.Кристаллические и аморфные твердые тела. Строение и симметрия кристаллов.
- •17.Классическая теория теплоемкости твердых тел. Закон дюлонга и пти.
- •18.Типы кристаллических решеток. Виды связей атомов в кристаллах. Модель эйнштейна и модель дебая.
- •19.Электрический заряд. Свойства электрического заряда. Взаимодействие электрических зарядов. Электрическое поле. Закон кулона.
- •20.Напряженность электрического поля. Силовые линии. Принцип суперпозиции. Напряженность поля точечного заряда и системы точечных зарядов.
- •21.Напряженность электрического поля. Силовые линии. Принцип суперпозиции. Напряженность поля точечного заряда и системы точечных зарядов.
- •22.Поток вектора напряженности электрического поля. Эквипотенциальные поверхности. Теорема гаусса для электростатического поля.
- •23.Применение теоремы гаусса к расчету напряженности электрических полей. Электрическое поле равномерно заряженной сферической поверхности и объемно заряженного шара.
- •25.Связь между напряженностью и потенциалом электростатического поля
- •26.Работа по перемещению заряда в электрическом поле. Разность потенциалов.
- •28.Свободные и связанные заряды в веществе. Электрический диполь. Потенциал и напряженность электрического поля на продолжении оси диполя.
- •28.Свободные и связанные заряды в веществе. Электрический диполь. Потенциал и напряженность электрического поля на продолжении оси диполя.
- •30.Типы диэлектриков. Поляризация диэлектриков. Поляризационные заряды. Вектор поляризации. Напряженность электрического поля в диэлектрике. Диэлектрическая восприимчивость.
- •31.Поляризация полярных и неполярных диэлектриков. Поляризуемость молекулы. Диэлектрическая восприимчивость полярных и неполярных диэлектриков. Ионная поляризация.
- •32.Теорема гаусса для диэлектрического поля в диэлектрике. Вектор электрического смещения.
- •33.Условия на границе двух однородных изотропных диэлектриков. Вектор электрического смещения. Относительная диэлектрическая проницаемость.
- •34.Спонтанная поляризация кристаллических диэлектриков. Сегнетоэлектрики. Пироэлектрики. Пьезоэлектрики.
- •36.Электростатическое поле внутри заряженного проводника и вблизи его поверхности. Проводники во внешнем электростатическом поле. Электроемкость уединенного проводника.
- •37.Конденсаторы. Типы конденсаторов. Соединение конденсаторов. Емкость плоского конденсатора.
- •38.Энергия заряженных проводника и конденсатора энергия электрического поля. Объемная плотность энергии.
- •39.Электрический ток проводимости в металлах, его характеристики и условия существования. Сторонние силы. Электродвижущая сила и напряжение.
- •40.Сопротивление проводников. Закон ома для однородного и неоднородного участков цепи, для замкнутой цепи. Правила кирхгофа.
- •41.Работа и мощность тока. Закон джоуля-ленца в интегральной и дифференциальной формах.
- •42. Основы классической электронной теории электропроводности металлов. Удельная электропроводность. Подвижносъ носителей тока.
- •43.Закон джоуля-ленца, закон видемана-франца и закон ома на основе классической теории электропроводности
- •44.Электрический ток в жидкостях и газах. Законы фарадея для электролиза. Ионизация молекул газов. Электрический ток в газах. Газовые разряды. Электропроводность газов. Плазма.
- •45. Электрический ток в вакууме. Работа выхода электронов из металла. Контактная разность потенциалов. Термоэлектродвижущая сила. Эффекты пельтье и томсона.
- •46. Электрический ток в вакууме. Электронная эмиссия. Виды эмиссий и их применение. Формула
38.Энергия заряженных проводника и конденсатора энергия электрического поля. Объемная плотность энергии.
Энергия
заряженного
уединенного
проводника. Пусть
имеется уединенный проводик,
заряд, емкость и потенциал
которого соответственно равны q,
С,
.
Увеличим заряд
этого проводника на dq.
Для этого необходимо
перенести заряд dq
из бесконечности
на
уединенный проводник, затратив на это
работу, равную
Чтобы зарядить тело от нулевого потенциала до , необходимо совершить работ
.
Энергия
заряженного проводника равна той работе,
которую
необходимо со шить,
чтобы зарядить этот проводник:
(3)
Энергия
заряженного
конденсатора. Как
всякий заряженный
проводник, конденсатор
обладает энергией, которая
в соответствии с формулой (3)
равна
(4)
где
q
— заряд
конденсатора, С —
его емкость,
— разность потенциалов
между обкладками
конденсатора.
Энергия
электростатического поля.
Преобразуем формулу
(4),
выражающую энергию
плоского конденсатора посредством
зарядов и потенциалов, воспользовавшись
выражением для
емкости плоского конденсатора (
)
и разности потенциалов
между его обкладками
.
Тогда
где V=Sd—объем конденсатора. Формула показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, напряженность поля Е.
Объемная плотность энергии электростатического поля (энергия единицы объема)
ОБЪЕМНАЯ ПЛОТНОСТЬ ЭНЕРГИИ.
Это
физическая величина, численно равная
отношению потенциальной энергии поля,
заключенной в элементе объема, к этому
объему. Для однородного поля объемная
плотность энергии равна
.
Для плоского конденсатора, объем которого
Sd, где S - площадь пластин, d - расстояние
между пластинами, имеем
39.Электрический ток проводимости в металлах, его характеристики и условия существования. Сторонние силы. Электродвижущая сила и напряжение.
ЭЛЕКТРИЧЕСКИЙ ТОК В РАЗЛИЧНЫХ СРЕДАХ
Электрическая проводимость ( электропроводность) - - это физическая величина , обратная сопротивлению, характеризует свойство вещества проводить электрический ток. R - сопротивление 1/ R - электрическая проводимость
ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ
Носители свободных зарядов в металлах - свободные электроны, которые упорядоченно перемещаются вдоль проводника под действием эл.поля с постоянной средней скоростью (из-за тормозного действия положительно заряженных ионов кристаллической решетки). Металлы обладают электронной проводимостью.
Сторонние силы, т. е. силы неэлектростатического происхождения. Они действуют лишь внутри источника тока. Разделяя заряды, эти силы создают разность потенциалов между концами остальной части цепи. В этой части движение зарядов обусловлено электрическим полем, возникающим в проводнике вследствие разности потенциалов между его концами.
Сторонние
силы характеризуют работой, которую
они совершают над перемещаемыми по
электрической цепи носителями
заряда. Величина,
равная работе сторонних сил по перемещению
единичного положительного заряда,
называется электродвижущей
силой
(ЭДС)
,
действующей в электрической цепи или
на ее участке.
ЭДС
можно выразить через напряжённость
электрического поля сторонних
сил (
).
В замкнутом контуре (
)
тогда ЭДС будет равна:
,
где
—
элемент длины контура.
ЭДС так же, как и напряжение, измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого источника равна нулю.