
- •1.Предмет, метод и примеры задач математического программирования.
- •2.Понятие модели и моделирования.
- •3.Свойства, требования и задачи моделирования.
- •4.Виды моделей по формам представления и внешним размерам.
- •5.Основные этапы процесса моделирования.
- •10.Вэ.Виды эксперимента (натуральный, лабораторный, вычислительный).
- •16. Злп. Целевая функция и ее оптимизация.
- •6.Классификация математических моделей по зависимости от времени, по отраслям знаний. Примеры задач.
- •7.Экономико-математические модели. Примеры моделей. Взаимосвязь моделирования и техники.
- •8.Вычислительный эксперимент. Характеристика вэ.
- •9. Основные этапы вэ. Сфера применения.
- •11.Компьютерное моделирование: постановка задачи, огрубление исходного процесса, формализация, разработка алгоритма и написание программы.
- •12.Компьютерное моделирование: получение результата на эвм, анализ результата, уточнение модели.
- •13. Задача линейного программирования. Сферы применения линейного моделирования.
- •20. Двойственная злп. Теорема двойственности.
- •14. Основные понятия, определения, общий вид задачи линейного программирования.
- •15. Канонический вид злп. Оптимальный и допустимый планы.
- •17. Злп. Алгоритм графического метода решения злп.
- •18. Злп. Суть симплексного метода решения задачи.
- •21. Двойственная задача. Интерпретация двойственных задач с экономической точки зрения.
- •19. Злп. Базисные и свободные переменные симплекс-метода, разрешающий элемент. Симплексная таблица.
- •22. Правила составления двойственных задач.
- •23. Транспортная задача. Общие понятия, определения, математическая формулировка.
- •24. Общий алгоритм решения тз. Метод "северо-западного угла"
- •30.Построение остового дерева. Алгоритм Прима.
- •25.Тз с нарушенным балансом. Метод минимальных элементов.
- •26. Тз. Метод потенциалов.
- •27.Применение ит excel,для решение тз.
- •28.Графовые модели. Основные понятия и определения.
- •31.Построение остового дерева. Алгоритм Краскала.
- •29. Графовые модели. Способы задания графа.
- •32.Задачи о нахождении кратчайших путей в графе. Алгоритм Дейкстры.
- •49.Алгоритм выполнения условной оптимизации ,безусловной оптимизации.
- •33.Задачи о нахождении кратчайших путей в графе. Алгоритм Флойда.
- •34.Потоки в сетях. Основные понятия и определения.
- •43. Алгоритм нумерации событий.
- •35.Потоки в сетях. Задача о максимальном потоке и минимальном разрезе.
- •36.Потоки в сетях. Алгоритм Форда-Фалкерсона.
- •37.Потоки в сетях. Задачи с множеством истоков и стоков.
- •38. Сетевая модель. Основные понятия и определения.
- •39. Сетевая модель. Сферы применения, использования.
- •40. Правило построения сетевых моделей.
- •42. Сетевая модель. Расчет временных параметров.
- •44. Дискретное программирование. Задача целочисленного программирования.
- •50. Динамическое программирование. Принцип оптимальности Беллмона.
- •53.Вычисление площади произвольной фигуры методом Монте-Карло.
- •51. Имитационное моделирование. Метод Монте-Карло, область применения
- •48.Простешие задачи,решаемые методом динамическим программировании.
- •52.Метод Монте-Карло. Сущность, оценка погрешности, область применения.
- •54.Элементы теории матричных игр. Основные понятия и определения.
- •41. Сетевая модель. Алгоритм ранжирования событий.
- •55. Элементы теории матричных игр. Цена игры, стратегии
- •56.Игры с природой. Основные понятия и определения.
- •57. Игры с природой. Критерий Вальце и Гульвица.
- •58. Игры с природой. Критерии максимума и Сэвиджа.
- •59. Mathcad. Общий обзор.
- •60. Mathcad. Правила работы и вычислений.
14. Основные понятия, определения, общий вид задачи линейного программирования.
Линейное программирование – это раздел математики, ориентированный на нахождение экстремума в задачах, которые описываются линейными уравнениями.
Необходимые условия ЗЛП:
1.Наличие ограничений на ресурсы;
2.Выбор критерия останова алгоритма, т.е. целевая функция должна быть оптимальна в некотором смысле;
Критерий останова алгоритма:
1.Быть единственным для данной задачи;
2.Измеряться в единицах количества;
3.Линейно зависеть от входных параметров;
Общий вид ЗЛП:
Целевая функция max(c1x1+c2x2+..+CnXn)
A11X1+A12X2+……..+A1nXn =b1
A21X1+A22X2+……+A2nXn =b2
Am1X1+Am2X2+….+AmnXn = bm
Условие не отрицательности
X1=0, x2=0 ………. Xn=0
15. Канонический вид злп. Оптимальный и допустимый планы.
Одним из универсальных методов ЛП является симплексный метод, который, однако, можно применять, если задача ЛП имеет каноническую форму.
Определение. Задача ЛП имеет каноническую форму, если все ограничения системы состоят только из уравнений (кроме неравенств, выражающих неотрицательность переменных) и целевую функцию необходимо минимизировать.
Любая общая задача ЛП может быть приведена к канонической форме.
Приведение общей задачи ЛП к канонической форме достигается путем введения новых (их называют дополнительными) переменных.
Если для канонической ЗЛП вектор решений с не содержит положительных элементов и является допустимым планом для данной ЗЛП, то этот вектор является оптимальным планом для данной ЗЛП.
Если для канонической ЗЛП вектор решений с содержит положительные и большие нуля элементы и является допустимым планом для данной ЗЛП, то этот вектор является опорным (допустимым) планом для данной ЗЛП.
17. Злп. Алгоритм графического метода решения злп.
Графический способ решения ЗЛП
Геометрическая интерпретация ЗЛП и графический метод решения
Система ограничений ограничений ЗЛП геометрическуи представляет собой многоугольник или многоулгольную область как пересечение полуплоскостей – геометрических образов неравенств системы. Целевая функция F=C1X1+C2X2 геометрически изображает семейство параллельных прямых, перпендикулярных вектору n(c1, c2)
Теорема: При перемещении прямой целевой функции направлении вектора n значения целевой функции возрастают, в противоположном направлении – убывают.
На этих утверждениях основан графический метод решения ЗЛП.
Алгоритм графического метода решения ЗЛП
-В системе координат построить прямые по управлениям, соответствующим каждому неравенству системы ограничений
-Найти полуплоскости решения каждого неравенства системы(обозначит стрелками)
-Найти многоугольник решений системы ограничений как пересечение полуплоскостей
-Построить вектор n(n1, n2) по коэффициентам целевой функции f=c1x1+c2x2
-В семействе параллельных прямых целевой функции выделить одну, например, через начало координат
-Перемещать прямую целевой функции параллельно самой себе по области решения, достигая max f при движении в направлении вектора n и min f при движении в противоположном направлении
Найти координаты точек max и min по чертежу и вычислить значения функции в этих точках (ответы).