
- •1.Предмет, метод и примеры задач математического программирования.
- •2.Понятие модели и моделирования.
- •3.Свойства, требования и задачи моделирования.
- •4.Виды моделей по формам представления и внешним размерам.
- •5.Основные этапы процесса моделирования.
- •10.Вэ.Виды эксперимента (натуральный, лабораторный, вычислительный).
- •16. Злп. Целевая функция и ее оптимизация.
- •6.Классификация математических моделей по зависимости от времени, по отраслям знаний. Примеры задач.
- •7.Экономико-математические модели. Примеры моделей. Взаимосвязь моделирования и техники.
- •8.Вычислительный эксперимент. Характеристика вэ.
- •9. Основные этапы вэ. Сфера применения.
- •11.Компьютерное моделирование: постановка задачи, огрубление исходного процесса, формализация, разработка алгоритма и написание программы.
- •12.Компьютерное моделирование: получение результата на эвм, анализ результата, уточнение модели.
- •13. Задача линейного программирования. Сферы применения линейного моделирования.
- •20. Двойственная злп. Теорема двойственности.
- •14. Основные понятия, определения, общий вид задачи линейного программирования.
- •15. Канонический вид злп. Оптимальный и допустимый планы.
- •17. Злп. Алгоритм графического метода решения злп.
- •18. Злп. Суть симплексного метода решения задачи.
- •21. Двойственная задача. Интерпретация двойственных задач с экономической точки зрения.
- •19. Злп. Базисные и свободные переменные симплекс-метода, разрешающий элемент. Симплексная таблица.
- •22. Правила составления двойственных задач.
- •23. Транспортная задача. Общие понятия, определения, математическая формулировка.
- •24. Общий алгоритм решения тз. Метод "северо-западного угла"
- •30.Построение остового дерева. Алгоритм Прима.
- •25.Тз с нарушенным балансом. Метод минимальных элементов.
- •26. Тз. Метод потенциалов.
- •27.Применение ит excel,для решение тз.
- •28.Графовые модели. Основные понятия и определения.
- •31.Построение остового дерева. Алгоритм Краскала.
- •29. Графовые модели. Способы задания графа.
- •32.Задачи о нахождении кратчайших путей в графе. Алгоритм Дейкстры.
- •49.Алгоритм выполнения условной оптимизации ,безусловной оптимизации.
- •33.Задачи о нахождении кратчайших путей в графе. Алгоритм Флойда.
- •34.Потоки в сетях. Основные понятия и определения.
- •43. Алгоритм нумерации событий.
- •35.Потоки в сетях. Задача о максимальном потоке и минимальном разрезе.
- •36.Потоки в сетях. Алгоритм Форда-Фалкерсона.
- •37.Потоки в сетях. Задачи с множеством истоков и стоков.
- •38. Сетевая модель. Основные понятия и определения.
- •39. Сетевая модель. Сферы применения, использования.
- •40. Правило построения сетевых моделей.
- •42. Сетевая модель. Расчет временных параметров.
- •44. Дискретное программирование. Задача целочисленного программирования.
- •50. Динамическое программирование. Принцип оптимальности Беллмона.
- •53.Вычисление площади произвольной фигуры методом Монте-Карло.
- •51. Имитационное моделирование. Метод Монте-Карло, область применения
- •48.Простешие задачи,решаемые методом динамическим программировании.
- •52.Метод Монте-Карло. Сущность, оценка погрешности, область применения.
- •54.Элементы теории матричных игр. Основные понятия и определения.
- •41. Сетевая модель. Алгоритм ранжирования событий.
- •55. Элементы теории матричных игр. Цена игры, стратегии
- •56.Игры с природой. Основные понятия и определения.
- •57. Игры с природой. Критерий Вальце и Гульвица.
- •58. Игры с природой. Критерии максимума и Сэвиджа.
- •59. Mathcad. Общий обзор.
- •60. Mathcad. Правила работы и вычислений.
6.Классификация математических моделей по зависимости от времени, по отраслям знаний. Примеры задач.
Классификация математических моделей:
1.Мат модели в зависимости от характера отображаемых свойств объекта различают функциональные и структурные. Функциональные отображают процессы функ-ния, чаще всего они имеют форму систем уравнений.
2.Мат модели различают по способам различения функциональных мат. моделей, теоретические и формальные. Теор. получают на основе изучения физических, химичеких закономерностей. Структура уравнений и параметры модели имеют определенное конкретно-предметное толкование.
3.В зависимости от линейности или нелинейности уравнений
4.В зависимости от множества значений переменной модели: непрерывные и дискретные
5.По форме связей между выходными внутренними и внешними параметрами: алгоритмические и аналитические. Алгоритмические – модели ввиде систем уравнений. Аналитические – модели ввиде зависимостей выходных параметров от внутренних и внешних
6.По общему и целевому назначению. Балансовые, трендовые оптимизационные имитационные.
7.По типу мат. аппарата: матричные модели линейного и нелинейного, модели динам. программирования, модели массового обслуживания, модели сетевого планирования и управления, модель теории игр.
8.По подходу к изучаемому явлению: дескриптивные - описание факт. наблюдаемых явлений, нормативные - описание того какой должна быть система.
В общем случае вид мат модели зависит не только от природы реального объекта но и от тех задач ради решения которых она создается и требуемой точности решения.
7.Экономико-математические модели. Примеры моделей. Взаимосвязь моделирования и техники.
Экономико-математическая модель (ЭММ) — это математическое описание экономического объекта или процесса с целью их исследования и управления ими.
Математическое моделирование означает создание условного образа объекта и описание его с помощью символов и операций, принятых в математике. К наиболее известным экономико-математической моделям относятся модели межотраслевого баланса (статичные и динамичные), при которых широко используются системы линейных уравнений. Идеи метода межотраслевого баланса используются для построения систем матричных моделей предприятий.
В экономической науке широко применяются также линейно-программные модели для решения задач рационализации перевозки грузов, выбора наилучших решений в сельскохозяйственном .производстве, эффективного развития отрасли и отдельного предприятия. Если задача в силу сложности объекта не может быть решена с помощью линейного программирования, используют методы нелинейного программирования.
В экономико-математических расчетах используются и экономико-статистические модели. Они применяются, в частности, для прогнозирования развития экономики.
Для анализа сложных экономических процессов применяются также модели общего экономического равновесия, в которых, с одной стороны, моделируется процесс производства в отраслях народного хозяйства, а с другой - процесс потребления различных групп потребителей: В настоящее время накоплен большой опыт применения экономико-математических моделей для анализа экономических процессов, прогнозирования и планирования.