
- •1.Предмет, метод и примеры задач математического программирования.
- •2.Понятие модели и моделирования.
- •3.Свойства, требования и задачи моделирования.
- •4.Виды моделей по формам представления и внешним размерам.
- •5.Основные этапы процесса моделирования.
- •10.Вэ.Виды эксперимента (натуральный, лабораторный, вычислительный).
- •16. Злп. Целевая функция и ее оптимизация.
- •6.Классификация математических моделей по зависимости от времени, по отраслям знаний. Примеры задач.
- •7.Экономико-математические модели. Примеры моделей. Взаимосвязь моделирования и техники.
- •8.Вычислительный эксперимент. Характеристика вэ.
- •9. Основные этапы вэ. Сфера применения.
- •11.Компьютерное моделирование: постановка задачи, огрубление исходного процесса, формализация, разработка алгоритма и написание программы.
- •12.Компьютерное моделирование: получение результата на эвм, анализ результата, уточнение модели.
- •13. Задача линейного программирования. Сферы применения линейного моделирования.
- •20. Двойственная злп. Теорема двойственности.
- •14. Основные понятия, определения, общий вид задачи линейного программирования.
- •15. Канонический вид злп. Оптимальный и допустимый планы.
- •17. Злп. Алгоритм графического метода решения злп.
- •18. Злп. Суть симплексного метода решения задачи.
- •21. Двойственная задача. Интерпретация двойственных задач с экономической точки зрения.
- •19. Злп. Базисные и свободные переменные симплекс-метода, разрешающий элемент. Симплексная таблица.
- •22. Правила составления двойственных задач.
- •23. Транспортная задача. Общие понятия, определения, математическая формулировка.
- •24. Общий алгоритм решения тз. Метод "северо-западного угла"
- •30.Построение остового дерева. Алгоритм Прима.
- •25.Тз с нарушенным балансом. Метод минимальных элементов.
- •26. Тз. Метод потенциалов.
- •27.Применение ит excel,для решение тз.
- •28.Графовые модели. Основные понятия и определения.
- •31.Построение остового дерева. Алгоритм Краскала.
- •29. Графовые модели. Способы задания графа.
- •32.Задачи о нахождении кратчайших путей в графе. Алгоритм Дейкстры.
- •49.Алгоритм выполнения условной оптимизации ,безусловной оптимизации.
- •33.Задачи о нахождении кратчайших путей в графе. Алгоритм Флойда.
- •34.Потоки в сетях. Основные понятия и определения.
- •43. Алгоритм нумерации событий.
- •35.Потоки в сетях. Задача о максимальном потоке и минимальном разрезе.
- •36.Потоки в сетях. Алгоритм Форда-Фалкерсона.
- •37.Потоки в сетях. Задачи с множеством истоков и стоков.
- •38. Сетевая модель. Основные понятия и определения.
- •39. Сетевая модель. Сферы применения, использования.
- •40. Правило построения сетевых моделей.
- •42. Сетевая модель. Расчет временных параметров.
- •44. Дискретное программирование. Задача целочисленного программирования.
- •50. Динамическое программирование. Принцип оптимальности Беллмона.
- •53.Вычисление площади произвольной фигуры методом Монте-Карло.
- •51. Имитационное моделирование. Метод Монте-Карло, область применения
- •48.Простешие задачи,решаемые методом динамическим программировании.
- •52.Метод Монте-Карло. Сущность, оценка погрешности, область применения.
- •54.Элементы теории матричных игр. Основные понятия и определения.
- •41. Сетевая модель. Алгоритм ранжирования событий.
- •55. Элементы теории матричных игр. Цена игры, стратегии
- •56.Игры с природой. Основные понятия и определения.
- •57. Игры с природой. Критерий Вальце и Гульвица.
- •58. Игры с природой. Критерии максимума и Сэвиджа.
- •59. Mathcad. Общий обзор.
- •60. Mathcad. Правила работы и вычислений.
52.Метод Монте-Карло. Сущность, оценка погрешности, область применения.
Оценка погрешности метода Монте-Карло.
Пусть для получения оценки a* математического ожидания а случайной величины Х было произведено n независимых испытаний (разыграно n возможных значений Х) и по ним была найдена выборочная средняя , которая принята в качестве искомой оценки. Ясно, что если повторить опыт, то будут получены другие возможные значения Х, следовательно, другая средняя, а значит, и другая оценка a*. Уже отсюда следует, что получить точную оценку математического ожидания невозможно. Естественно возникает вопрос о величине допускаемой ошибки. Ограничимся отысканием лишь верхней границы d допускаемой ошибки с заданной вероятностью (надёжностью) g.
Интересующая нас верхняя грань ошибки d есть не что иное, как «точность оценки» математического ожидания по выборочной средней при помощи доверительных интервалов. Рассмотрим следующие три случая.
1. Случайная величина Х распределена нормально и её среднее квадратичное отклонение d известно.
В этом случае с надёжностью g верхняя граница ошибки, (*)
где n число испытаний (разыгранных значений Х); t – значение аргумента функции Лапласа, при котором , s - известное среднее квадратичное отклонение Х.
2. Случайная величина Х распределена нормально, причём её среднее квадратическое отклонение s неизвестно.
В этом случае с надёжностью g верхняя граница ошибки, (**)
где n – число испытаний; s – «исправленное» среднее квадратическое отклонение, находят по таблице приложения 3.
3. Случайная величина Х распределена по закону, отличному от нормального.
В этом случае при достаточно большом числе испытаний (n>30) с надёжностью, приближённо равной g, верхняя граница ошибки может быть вычислена по формуле (*), если среднее квадратическое отклонение s случайной величины Х известно; если же s неизвестно, то можно подставить в формулу (*) его оценку s – «исправленное» среднее квадратическое отклонение либо воспользоваться формулой (**). Заметим, что чем больше n, тем меньше различие между результатами, которые дают обе формулы. Это объясняется тем, что при распределение Стьюдента стремится к нормальному.
Из изложенного следует, что метод Монте-Карло тесно связан с задачами теории вероятностей, математической статистики и вычислительной математики. В связи с задачей моделирования случайных величин (в особенности равномерно распределённых) существенную роль играют также методы теории чисел.
45 Дискетное программирование. Метод Гомори .Идея метода Гомори состоит в том ,что поставленную задачу сначала решаем любым методом линейного программирования(напр симплекс методом),а затем в полученном ответе выделяем дробных части и составляем дополнительное ограничение. Полученное дополнительное ограничение вводим в последнюю(по ходу решения)матрицу симплексного метода и определяем целочисленный ответ.