
- •1.Предмет, метод и примеры задач математического программирования.
- •2.Понятие модели и моделирования.
- •3.Свойства, требования и задачи моделирования.
- •4.Виды моделей по формам представления и внешним размерам.
- •5.Основные этапы процесса моделирования.
- •10.Вэ.Виды эксперимента (натуральный, лабораторный, вычислительный).
- •16. Злп. Целевая функция и ее оптимизация.
- •6.Классификация математических моделей по зависимости от времени, по отраслям знаний. Примеры задач.
- •7.Экономико-математические модели. Примеры моделей. Взаимосвязь моделирования и техники.
- •8.Вычислительный эксперимент. Характеристика вэ.
- •9. Основные этапы вэ. Сфера применения.
- •11.Компьютерное моделирование: постановка задачи, огрубление исходного процесса, формализация, разработка алгоритма и написание программы.
- •12.Компьютерное моделирование: получение результата на эвм, анализ результата, уточнение модели.
- •13. Задача линейного программирования. Сферы применения линейного моделирования.
- •20. Двойственная злп. Теорема двойственности.
- •14. Основные понятия, определения, общий вид задачи линейного программирования.
- •15. Канонический вид злп. Оптимальный и допустимый планы.
- •17. Злп. Алгоритм графического метода решения злп.
- •18. Злп. Суть симплексного метода решения задачи.
- •21. Двойственная задача. Интерпретация двойственных задач с экономической точки зрения.
- •19. Злп. Базисные и свободные переменные симплекс-метода, разрешающий элемент. Симплексная таблица.
- •22. Правила составления двойственных задач.
- •23. Транспортная задача. Общие понятия, определения, математическая формулировка.
- •24. Общий алгоритм решения тз. Метод "северо-западного угла"
- •30.Построение остового дерева. Алгоритм Прима.
- •25.Тз с нарушенным балансом. Метод минимальных элементов.
- •26. Тз. Метод потенциалов.
- •27.Применение ит excel,для решение тз.
- •28.Графовые модели. Основные понятия и определения.
- •31.Построение остового дерева. Алгоритм Краскала.
- •29. Графовые модели. Способы задания графа.
- •32.Задачи о нахождении кратчайших путей в графе. Алгоритм Дейкстры.
- •49.Алгоритм выполнения условной оптимизации ,безусловной оптимизации.
- •33.Задачи о нахождении кратчайших путей в графе. Алгоритм Флойда.
- •34.Потоки в сетях. Основные понятия и определения.
- •43. Алгоритм нумерации событий.
- •35.Потоки в сетях. Задача о максимальном потоке и минимальном разрезе.
- •36.Потоки в сетях. Алгоритм Форда-Фалкерсона.
- •37.Потоки в сетях. Задачи с множеством истоков и стоков.
- •38. Сетевая модель. Основные понятия и определения.
- •39. Сетевая модель. Сферы применения, использования.
- •40. Правило построения сетевых моделей.
- •42. Сетевая модель. Расчет временных параметров.
- •44. Дискретное программирование. Задача целочисленного программирования.
- •50. Динамическое программирование. Принцип оптимальности Беллмона.
- •53.Вычисление площади произвольной фигуры методом Монте-Карло.
- •51. Имитационное моделирование. Метод Монте-Карло, область применения
- •48.Простешие задачи,решаемые методом динамическим программировании.
- •52.Метод Монте-Карло. Сущность, оценка погрешности, область применения.
- •54.Элементы теории матричных игр. Основные понятия и определения.
- •41. Сетевая модель. Алгоритм ранжирования событий.
- •55. Элементы теории матричных игр. Цена игры, стратегии
- •56.Игры с природой. Основные понятия и определения.
- •57. Игры с природой. Критерий Вальце и Гульвица.
- •58. Игры с природой. Критерии максимума и Сэвиджа.
- •59. Mathcad. Общий обзор.
- •60. Mathcad. Правила работы и вычислений.
42. Сетевая модель. Расчет временных параметров.
Главной характеристикой сетевого графика является длина критического пути. Расчет критического пути выполняют в два этапа (от начала к концу сетевого графика). На первом этапе определяют ранние сроки наступления событий, а на втором – поздние сроки наступления событий.
1.Вычисление ранних сроков наступления событий:
-
ранний срок начала всех работ, выходящих
из события i.
-ранний
срок начала всех работ, входящих в
событие j.
-
время выполнения работ.
=
max(
+
).
2.Вычисление поздних сроков наступления событий.
При вычислении поздних сроков наступления событий расчеты выполняют в обратном порядке.
=
min (
+
).
44. Дискретное программирование. Задача целочисленного программирования.
ДИСКРЕТНОЕ ПРОГРАММИРОВАНИЕ- область математики, занимающаяся исследованием и решением экстремальных задач на конечных множествах.
Методы решения целочисленных ЗЛП:
Целочисленное программирование — разновидность математического программирования, подразумевающая, что искомые значения должны быть целыми числами.
Целочисленное программирование – один из наиболее молодых, перспективных и быстро развивающихся разделов математического программирования. Можно перечислить большое количество разнообразных задач планирования экономики, организации производства, исследования конфликтных ситуаций, синтеза схем автоматического регулирования, которые формально сводятся к выбору лучших, в некотором смысле, значений параметров из определенной дискретной совокупности заданных величин. К ним можно отнести и экстремальные комбинаторные задачи, возникающие в различных разделах дискретной математики.
Целочисленные задачи математического программирования могут возникать различными путями.
1. Существуют ЗЛП, которые формально к целочисленным не относятся, но при соответствующих исходных данных всегда обладают целочисленным планом. Примеры таких задач – транспортная задача и ее модификации (задачи о назначениях, о потоках в сетях).
2. Толчком к изучению целочисленных задач в собственном смысле слова явилось рассмотрение ЗЛП, в которых переменные представляли физически неделимые величины. Они были названы задачами с неделимостью. Таковы, например, задачи об оптимизации комплекса средств доставки грузов, о нахождении минимального порожнего пробега автомобилей при выполнении заданного плана перевозок.
3. Другим важным толчком к построению теории целочисленного программирования стал новый подход к некоторым экстремальным комбинаторным задачам. В них требуется найти экстремум целочисленной линейной функции, заданной на конечном множестве элементов. В качестве примеров можно назвать задачи коммивояжера (бродячего торговца), об оптимальном назначении, теории расписания, или календарного планирования, и задачи с дополнительными логическими условиями