Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_k_ekzamenu_po_mat_modu.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
77.84 Кб
Скачать

25.Тз с нарушенным балансом. Метод минимальных элементов.

Транспортная задача относится к классу задач линейного программирования.ТЗ решает проблему нахождения оптимального (минимального по стоимости) плана распределения и перемещения ресурсов от производителей к потребителям.Для решения ТЗ необходимо и достаточно, чтобы сумма запасов продукции равнялась сумме спроса на нее.Если равенство выполняется, то ТЗ называется закрытой или задачей с правильным балансом.Если условие не выполняется, то задача называется открытой или задачей с нарушенным балансом.В случае, если суммарный запас продукта превышает общий спрос не нее, то в рассмотрение вводится фиктивный пункт потребления,со спросом равным разнице, на которую предложение превышало спрос.Если же общий спрос больше, чем предлагается товара, то вводится фиктивный пункт отправления.

Суть метода минимальных элементов состоит в том, что в матрице стоимостей выбирается минимальная стоимость перевозки. Затем назначается максимальный объем ресурса от производителя к потребителю для данной перевозки, далее выбирается следующая наименьшая стоимость и т.д. пока все ресурсы не будут распределены.

26. Тз. Метод потенциалов.

Транспортная задача относится к классу задач линейного программирования.ТЗ решает проблему нахождения оптимального (минимального по стоимости) плана распределения и перемещения ресурсов от производителей к потребителям.Для решения ТЗ необходимо и достаточно, чтобы сумма запасов продукции равнялась сумме спроса на нее.Если равенство выполняется, то ТЗ называется закрытой или задачей с правильным балансом.Если условие не выполняется, то задача называется открытой или задачей с нарушенным балансом.В случае, если суммарный запас продукта превышает общий спрос не нее, то в рассмотрение вводится фиктивный пункт потребления,со спросом равным разнице, на которую предложение превышало спрос.Если же общий спрос больше, чем предлагается товара, то вводится фиктивный пункт отправления.

Метод потенциалов используется для нахождения оптимального решения ТЗ.Решение транспортной задачи будет оптимальным, если найдутся такие числа Ui (i=1..m) и Vj (j=1..n), называемые соответственно потенциалами поставщиков и потребителей, которые будут удовлетворять условиям Ui*+Vj*=Cij, xij*>0,Ui*+Vj*<=Cij,xij*=0.

Алгоритм решения начинается с того, что находится опорный план перевозки, затем этот план проверяетя на оптимальность.Для всех базисных (заполненных) клеток находим потенциалы поставщиков Ui и потребителей Vj по формуле Ui*+Vj*=Cij,xij*>0.Для свободных клеток вычисляются оценки по формуле Cij-(Ui+Vj).Если все оценки положительны или равны нулю, то план является оптимальным.Если хотя бы одна оценка меньше нуля, то строим цикл и выполняем перераспределение ресурсов.Цикл строится к перспективной клетке, в нее ставится знак плюс, остальные знаки чередуются и определяется величина перераспределения груза Q=min(xij).Осуществляется перераспределение груза по циклу на величину Q.Затем повторяем алгоритм.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]