
- •17. Развитие эволюционного учения в додарвиновский период
- •18.Креационизм. Вклад Линнея, Ломарка, Бюффона в развитие эволюционного учения.
- •19. Дарвинизм. Движущие силы эволюции.
- •20. Генетические основы эволюции.
- •22 . Механизм эволюционного процесса. Формы борьбы за существование.
- •23. Синтетическая теория эволюции.
- •24. Современные представления об эволюции органического мира.
24. Современные представления об эволюции органического мира.
Биология – наука о происхождении и развитии живого, его строении, формах организации и способах активности. Современная биология представляет собой динамичное знание, меняющееся буквально на глазах. Лавинообразное накопление новых экспериментальных данных подчас опережает возможности его теоретической интерпретации и объяснения. Стремительно растет число междисциплинарных исследований на стыке биологии и химии, биологии и физики, биологии и антропологии и т. п. Это в свою очередь требует использования методов и средств, которые прежде были совершенно чужды биологии. Насчитывается уже более 50 наук внутри комплекса биологического знания, среди них: ботаника и зоология, генетика и молекулярная биология, анатомия и морфология, цитология и биогео-ценология, биофизика и биохимия, палеонтология и эмбриология, эволюционная биология и экология и т. п. Такое многообразие научных дисциплин объясняется сложностью объекта исследования – живой материи.
Биология возникла и долгое время развивалась как описательная наука, осуществлявшая анализ и классификацию огромного эмпирического материала (2.5). Перед современной биологией по-прежнему стоит задача классификации всего многообразия живых организмов. Считается, что до сих пор описано только две трети существующих видов, а это 1,2 млн животных, 500 тыс. растений, сотни тысяч грибов, около 3 тыс. бактерий и т. п. Тем не менее в современной биологии произошли существенные методологические изменения. В XX в. биологическое знание приобрело объяснительный характер. Современная биология использует генетический и системно-структурный подходы. В рамках первого рассматриваются вопросы происхождения и эволюции живой материи, причины, механизмы и особенности биогенеза. В рамках второго изучаются различные уровни организации живого, принципы их функционирования, особенности взаимосвязей и т. д.
Особенностью современного этапа развития биологического знания является его тесная связь не только с другими науками естественнонаучного комплекса, но и с гуманитарным и социальным познанием. Ценностная составляющая биологического знания по мере развития этой научной дисциплины только увеличивается. Успехи биофизики и биохимии, молекулярной биологии и генетики позволяют говорить о прорыве в наших знаниях о сущности живого. Однако, все ближе подходя к разгадке тайны жизни, человечество сталкивается с множеством мировоззренческих проблем, решение которых необходимо, в том числе и в целях самосохранения и выживания. В связи с этим некоторые данные современной биологии требуют философского осмысления и интерпретации. Вместе с тем биология оказывается тесно связанной с практическими нуждами, более того, огромное число теоретических проблем возникает именно для решения конкретных практических задач: медицинских, экологических, экономических, политических и т. п. Все эти изменения свидетельствуют: в середине XX в. в биологии произошла научная революция, по масштабам сравнимая с революцией в физике и астрономии.
Современная биология утверждает единство живой материи на всех уровнях, представляя мир живого как огромную систему систем, в которой каждый компонент обладает собственными специфическими свойствами и соединяется с другими особым типом связей. Развитие знаний приводит к постепенной трансформации представлений о сущности жизни, единстве космической и биологической эволюции, взаимодействии биологического и социального в человеке и т. п. Новые биологические данные изменяют ту картину мира, которая на протяжении длительного времени формировалась физикой. Открытия в биологии определяют дальнейшее развитие всего естествознания. Именно поэтому современная научная картина мира невозможна без биологических знаний. Более того, биология становится тем основанием, на котором формируются новые мировоззренческие принципы, определяющие самопонимание человека XXI в.
17.Развитие эволюционного учения в додарвиновский период Ученых разных времен и народов всегда волновали проблемы происхождения человека, возникновения жизни на Земле, многообразия живых существ и их удивительная приспособленность к окружающей среде. Первые стихийно-материалистические идеи о единстве живой и неживой природы появились на Древнем Востоке. Их разделяли философы-материалисты Древней Греции и Рима. Многие мыслители того времени высказывали стихийно-диалектические суждения о превращении одних организмов в другие, развитии высших форм из низших и т. д. С начала нашей эры до середины XVIII в. в биологии господствовали идеалистические взгляды о «божественном» происхождении человека и живых существ, об их «изначальной» целесообразности и метафизические суждения о неизменяемости организмов. Все иные высказывания церковь безжалостно преследовала. Биология в те времена носила описательный характер. Она накопила огромный фактический материал о разнообразных растениях и животных, не имевших общепринятых названий. Попытки отдельных ученых систематизировать этот материал не имели успеха. Первую относительно удачную искусственную систему органического мира разработал шведский натуралист Карл Линней (1707—1778). За основу своей системы он принял вид, который определял как элементарную единицу живой природы. (Современное определение вида см. в главе «Дарвинизм».) Близкие виды объединялись им в роды, роды — в отряды, отряды — в классы. Для обозначения вида он использовал два латинских слова: первое (существительное) — название рода, второе (прилагательное) — название вида. Этот принцип двойной номенклатуры сохранился в систематике и до настоящего времени. Линней систематизировал огромный материал, накопленный предшественниками, и описал более 8000 видов, ввел ряд новых биологических терминов. Его работы послужили серьезной основой для дальнейшего изучения и классификации живых организмов. Недостатки системы Линнея состояли в том, что при классификации он учитывал лишь 1—2 признака (у растений — количество тычинок, у животных — строение дыхательной и кровеносной систем), не отражавших подлинного родства, поэтому далекие роды оказались в одном классе, а близкие — в разных. Виды в природе Линней считал неизменными, созданными творцом. Французский ученый Жан Батист Ламарк (1774 — 1829) выдвинул теорию об изменяемости видов. Он утверждал, что разнообразие животных и растений есть результат исторического развития органического мира — эволюции (от лат. «эволютио» — разворачивать), которую понимал как ступенчатое развитие, усложнение организации живых организмов от низших форм к высшим и называл «градацией». Он предложил своеобразную систему органического мира, расположив в ней родственные группы в восходящем порядке: от простых к более сложным в виде «лестницы» Но Ламарк ошибочно полагал, что изменения среды всегда вызывают у организмов полезные изменения, а причиной прогресса живой природы считал внутреннее стремление организмов к совершенствованию своей организации. Причиной приспособления растений к внешней среде он считал врожденную способность изменяться целесообразно изменившимся условиям, а животных — «упражнением или неупражнением» органов. В России первые представления об эволюции органического мира высказал М. В. Ломоносов (1711 — 1765), утверждавший; что изменения неживой природы ведут к изменениям животных и растений. А. Н. Радищев (1749 — 1802) полагал, что природа развивается от простых существ к сложным, а человека он считал «единоутробным сродственником всему на Земле живущему». К. Ф. Рулье (1 814 — 185 8) разделял взгляды Ламарка на эволюцию органического мира, но считал, что изменения внешней среды могут вызывать у организмов как полезные изменения, так и вредные. Он первый для доказательства эволюции провел сравнительное описание вымерших и ныне живущих организмов, взрослых животных и их зародышей. А. И. Герцен (1812 — 1870) началом всего живого считал материю, а все многообразие живых существ — продуктом развития материи. |
18.Креационизм. Вклад Линнея, Ломарка, Бюффона в развитие эволюционного учения. Креациони́зм (от лат. creatio, род. п. creationis — творение) — теологическая и мировоззренческая концепция, согласно которой основные формы органического мира (жизнь), человечество, планета Земля, а также мир в целом, рассматриваются как непосредственно созданные Творцом или Богом. Креационистские концепции варьируют от чисто религиозных до претендующих на научность. Такие направления как «научный креационизм» и появившаяся в середине 1990-х годов нео-креационистская концепция «Разумного замысла» (англ. Intelligent design), утверждают, что имеют научное основание. Однако, научным сообществом эти концепции признаны псевдонаучными, поскольку противоречат научным данным, а также не соответствуют критериям верифицируемости, фальсифицируемости и принципу Оккама. К.Линней разделял метафизические взгляды на природу, усматривая в ней изначальную целесообразность, “премудрость творца”. Каждый вид он считал неизменным и постоянным, не связанным родством с другими видами. Тем не менее он признавал, что виды могут возникнуть путем скрещивания или в результате изменения среды, но такое понимание к нему пришло в конце жизни. Вклад К. Линнея в прогрессивное развитие естествознания огромен: он предложил систему животных и растений; ввел бинарную систему двойных названий; описал около 1 200 родов и более 8 000 видов растений; реформировал ботанический язык и установил до 1 000 терминов, многие из которых ввел впервые. Труды К. Линнея помогли его последователям осуществить систематизацию разрозненного фактического материала и усовершенствовать ее. В начале XVIII в. французский ученый Жано-Батисто Ламарк (1744-1829 гг.) создал первую эволюционную теорию, которую изложил в труде “Философия зоологии” (1809 г.). По Ламарку, одни организмы произошли от других в процессе длительной эволюции, постепенно изменяясь и совершенствуясь под воздействием внешней среды. Изменения закреплялись и передавались по наследству, что и явилось тем основным фактором, который обусловил эволюцию. Ж.-Б. Ламарк впервые изложил идеи эволюции живой природы, утверждавшие историческое развитие от простого к сложному. Однако вопрос о движущих силах эволюции им был решен неправильно: Ламарк полагал, что основной движущей силой эволюции является внутреннее стремление всего живого к совершенству. Его утверждение о врожденной способности организмов отвечать на изменения внешней среды только полезными наследственными изменениями дальнейшими исследованиями ученых не подтвердилось. Доказательства эволюционной теории, выдвинутые Ж.-Б. Ламарком, оказались недостаточными для полного их принятия, поскольку не были даны ответы на вопросы: чем объяснить большое разнообразие видов в природе; с чем связано совершенствование организации живых существ; как объяснить приспособленность организмов к условиям внешней среды? Бюффон (buffon) Жорж Луи Леклерк (1707–1788), французский естествоиспытатель. Директор Ботанического сада в Париже (с 1739). В многотомном труде «Естественная материя», ставшем благодаря ясному и живому языку одним из самых популярных в те времена сочинений по естествознанию, Бюффон описал множество видов животных, снабдив издание прекрасными иллюстрациями. В отличие от К. Линнея, полагал, что биологические виды не постоянны, т. е. могут изменяться под воздействием внешних условий.
|
20.Генетические основы эволюции. Популяционная генетика ставит перед собой гораздо более скромную задачу, чем общая теория эволюции. Если мы примем дарвиновский взгляд на эволюцию как на переход индивидуальной изменчивости в популяционную и видовую в пространстве и во времени, то основной частью исследования эволюции должно стать изучение происхождения и динамики генотипической изменчивости в популяциях. Но хотя это направление — популяционная генетика — и является одним из основных компонентов «супа», это далеко не весь «суп». Популяционная генетика, безусловно, позволила объяснить многое об изменениях или постоянстве генных частот в популяциях и о темпах дивергенции генных частот в полностью или частично изолированных популяциях, однако ее вклад в наши представления о видообразовании очень невелик, а для объяснения вымирания она вообще ничего не дала. А между тем видообразование и вымирание — это такие же важные аспекты эволюции, как и филетическая эволюция, которая составляет, строго говоря, предмет эволюционной генетики. Это не означает, что видообразование и вымирание не являются естественным продолжением изменений внутри популяций, но существующие теории отражают эти процессы лишь в самом общем и расплывчатом виде. Концепция постоянства генотипического состава популяции на протяжении ряда поколений известна как закон Харды — Вейнберга. После того как этот закон был установлен, Дж. Холдейн, Р. Фишер и С. Райт разработали математические методы, позволяющие анализировать наследование того или иного признака в данной популяции. В дальнейшем стало ясно, что процесс эволюции — это, попросту говоря, результат отклонения от принципа генетической стабильности Харди — Вейнберга. Эволюция связана с изменениями, происходящими в генофонде популяции в результате мутаций и отбора. Поэтому закон Харди — Вейнберга имеет первостепенное значение для понимания механизма эволюционных изменений. Как мы уже говорили, генотипы в популяции распределяются в соответствии с разложением квадрата суммы частот двух аллелей. Если р — частота гена А и q — частота гена а в популяции в целом, то р + q = 1 (так как каждый ген должен быть либо А, либо а); зная одну из этих величин, мы можем определить другую, например р = 1 — q. В популяции организмов, скрещивающихся между собой случайным образом, р яйцеклеток, содержащих ген А, и q яйцеклеток, содержащих ген а, оплодотворяются р сперматозоидами с геном А и q сперматозоидами с геном а : (рА + qa) X (рА + qa). Соотношение потомков разных типов, возникающих в результате всех этих скрещиваний, дается разложением этого произведения: р2АА + 2pqAa + q2aa. Если р — частота гена А — равна 0,5, то q — частота гена а — равна 1 — p, т. е. 1 — 0,5 = 0,5. По формуле частота генотипа АА, т. е. р2, равна 0,52 = 0,25, а частота генотипа Аа, т. е. 2pq, равна 2 X 0,5 X 0,5 = 0,5; частота генотипа аа, т. е. q2, равна 0,52, или 0,25. Любая популяция, в которой распределение аллелей А и а соответствует формуле р2АА + 2pqAa + q2aa, находится в генетическом равновесии. Это означает, что относительные частоты обоих аллелей в последующих поколениях будут такими же (если не изменятся в результате мутаций или отбора). Это представление о математической основе генетического равновесия в популяциях и об изменениях его под влиянием мутаций и отбора служит фундаментом современных концепций о действии естественного отбора в процессе эволюции.
|
21. Особенности генотипической изменчивости. Виды мутаций. Генетика - область биологии, изучающая наследственность и изменчивость. Благодаря наследственности родители и потомки имеют сходный тип биосинтеза, определяющий сходство в химическом составе тканей, характере обмена веществ, физиологических отправлениях, морфологических признаках и других особенностях. Изменчивость - это явление, противоположное наследственности. Изменчивость заключается в различиях между особями по признакам тела или отдельных его органов (размеры, форма, окраска) и функциям. Различия между особями одного вида могут зависеть от изменения самих наследственных факторов - генов - и внешних условий, в которых реализуется генотип и происходит развитие организма. В соответствии с этим изменчивость организмов выражается в двух формах: генотипической и фенотипической. Генотипическая изменчивость связана с изменением клеточных структур, обеспечивающих воспроизведение новообразований, с изменением генотипа организма. Генотипическая изменчивость подразделяется на комбинативную и мутационную. - Комбинативная изменчивость Комбинативная, или гибридная, изменчивость характеризуется появлением новообразований в результате сочетания и взаимодействия генов родительских форм. Хотя новых (измененных) генов при комбинативной изменчивости и не возникает, ее роль в селекции растений, животных и эволюционном процессе исключительно велика. - Мутационная изменчивость (от латинского mutatio - изменения) Мутации вызывают структурные изменения генов и хромосом, ведущие к появлению новых наследственных признаков и свойств организма. Они представляют важнейший источник наследственной изменчивости, тот основной "строительный материал", который используется в эволюции организмов. Мутациями называют прерывистое, внезапное, без переходных состояний изменение признаков и свойств организма. Они устойчивы во времени и происходят применительно к одному признаку в различных направлениях. Факторы, вызывающие мутации, называют мутагентами. Мутагенты бывают физические, химические и биологические. Физические мутагенты К физическим мутагентам относят: - электромагнитные излучения (лучи Рентгена и гамма-лучи); - корпускулярные излучения (протоны, нейтроны); - действие низкой температуры; - действие высокой температуры; - ультразвук. Химические мутагенты К химическим относят: - фармакологические - различные лекарственные препараты (раствор йодистого калия, аммиак); - промышленные - используемые в промышленности вещества- в производстве текстильных тканей, формальдегид - в производстве искусственных смол, натрий-бисульфит - в пищевой промышленности). Биологические: - вирусы; - простейшие (различные паразиты). Физические мутанты вызывают главным образом хромосомные перестройки, сопровождающиеся резким изменением строения и функций организмов.
|
|
||||||
23. Синтетическая теория эволюции. Синтетическая теория эволюции (также современный эволюционный синтез) — современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма. СТЭ также опирается на палеонтологию, систематику, молекулярную биологию и другие.Содержание Синтетическая теория в её нынешнем виде образовалась в результате переосмысления ряда положений классического дарвинизма с позиций генетики начала XX века. После переоткрытия законов Менделя (в 1901 г.), доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики трудами Рональда Фишера, Джона Б. С. Холдейна-младшего и Сьюэла Райта, учение Дарвина приобрело прочный генетический фундамент. Статья С.С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926) по сути стала ядром будущей синтетической теории эволюции и основой для дальнейшего синтеза дарвинизма и генетики. В этой статье Четвериков показал совместимость принципов генетики с теорией естественного отбора и заложил основы эволюционной генетики. Главная эволюционная публикация С. С. Четверикова была переведена на английский язык в лаборатории Дж. Холдейна, но никогда не была опубликована за рубежом. В работах Дж. Холдейна, Н. В. Тимофеева-Ресовского и Ф. Г. Добржанского идеи, выраженные С. С. Четвериковым, распространились на Запад, где почти одновременно Р. Фишер высказал очень сходные взгляды о эволюции доминантности. Толчок к развитию синтетической теории дала гипотеза о рецессивности новых генов. Говоря языком генетики второй половины XX века, эта гипотеза предполагала, что в каждой воспроизводящейся группе организмов во время созревания гамет в результате ошибок при репликации ДНК постоянно возникают мутации — новые варианты генов. Влияние генов на строение и функции организма плейотропно: каждый ген участвует в определении нескольких признаков. С другой стороны, каждый признак зависит от многих генов; генетики называют это явление генетической полимерией признаков. Фишер говорит о том, что плейотропия и полимерия отражают взаимодействие генов, благодаря которому внешнее проявление каждого гена зависит от его генетического окружения. Поэтому рекомбинация, порождая всё новые генные сочетания, в конце концов создает для данной мутации такое генное окружение, которое позволяет мутации проявиться в фенотипе особи-носителя. Так мутация попадает под действие естественного отбора, отбор уничтожает сочетания генов, затрудняющие жизнь и размножение организмов в данной среде, и сохраняет нейтральные и выгодные сочетания, которые подвергаются дальнейшему размножению, рекомбинации и тестированию отбором. Причем отбираются прежде всего такие генные комбинации, которые способствуют благоприятному и одновременно устойчивому фенотипическому выражению изначально мало заметных мутаций, за счет чего эти мутантные гены постепенно становятся доминантными. Эта идея нашла выражение в труде Р. Фишера «The genetical theory of natural selection» (1930). Таким образом, сущность синтетической теории составляет преимущественное размножение определённых генотипов и передача их потомкам. В вопросе об источнике генетического разнообразия синтетическая теория признает главную роль за рекомбинацией генов. Считают, что эволюционный акт состоялся, когда отбор сохранил генное сочетание, нетипичное для предшествующей истории вида. В итоге для осуществления эволюции необходимо наличие трёх процессов: мутационного, генерирующего новые варианты генов с малым фенотипическим выражением; рекомбинационного, создающего новые фенотипы особей; селекционного, определяющего соответствие этих фенотипов данным условиям обитания или произрастания. Все сторонники синтетической теории признают участие в эволюции трёх перечисленных факторов. Важной предпосылкой для возникновения новой теории эволюции явилась книга английского генетика, математика и биохимика Дж. Б. С. Холдейна-младшего, издавшего её в 1932 году под названием «The causes of evolution». Холдейн, создавая генетику индивидуального развития, сразу же включил новую науку в решение проблем макроэволюции. Крупные эволюционные новшества очень часто возникают на основе неотении (сохранение ювенильных признаков у взрослого организма). Неотенией Холдейн объяснял происхождение человека («голая обезьяна»), эволюцию таких крупных таксонов, как граптолиты и фораминиферы. В 1933 году учитель Четверикова Н. К. Кольцов показал, что неотения в животном царстве широко распространена и играет важную роль в прогрессивной эволюции. Она ведет к морфологическому упрощению, но при этом сохраняется богатство генотипа. Практически во всех историко-научных моделях 1937 год был назван годом возникновения СТЭ — в этом году появилась книга русско-американского генетика и энтомолога-систематика Ф. Г. Добржанского «Genetics and the Origin of Species». Успех книги Добржанского определялся тем, что он был одновременно натуралистом и экспериментальным генетиком. «Двойная специализация Добржанского позволила ему первому перебросить твёрдый мост от лагеря экспериментальных биологов к лагерю натуралистов» (Э. Майр). Впервые было сформулировано важнейшее понятие об «изолирующих механизмах эволюции» — тех репродуктивных барьерах, которые отделяют генофонд одного вида от генофондов других видов. Добржанский ввёл в широкий научный оборот полузабытое уравнение Харди-Вайнберга. Он также внедрил в натуралистический материал «эффект С. Райта», полагая, что микрогеографические расы возникают под воздействием случайных изменений частот генов в малых изолятах, то есть адаптивно-нейтральным путем.
|
24. Современные представления об эволюции органического мира. Биология – наука о происхождении и развитии живого, его строении, формах организации и способах активности. Современная биология представляет собой динамичное знание, меняющееся буквально на глазах. Лавинообразное накопление новых экспериментальных данных подчас опережает возможности его теоретической интерпретации и объяснения. Стремительно растет число междисциплинарных исследований на стыке биологии и химии, биологии и физики, биологии и антропологии и т. п. Это в свою очередь требует использования методов и средств, которые прежде были совершенно чужды биологии. Насчитывается уже более 50 наук внутри комплекса биологического знания, среди них: ботаника и зоология, генетика и молекулярная биология, анатомия и морфология, цитология и биогео-ценология, биофизика и биохимия, палеонтология и эмбриология, эволюционная биология и экология и т. п. Такое многообразие научных дисциплин объясняется сложностью объекта исследования – живой материи. Биология возникла и долгое время развивалась как описательная наука, осуществлявшая анализ и классификацию огромного эмпирического материала (2.5). Перед современной биологией по-прежнему стоит задача классификации всего многообразия живых организмов. Считается, что до сих пор описано только две трети существующих видов, а это 1,2 млн животных, 500 тыс. растений, сотни тысяч грибов, около 3 тыс. бактерий и т. п. Тем не менее в современной биологии произошли существенные методологические изменения. В XX в. биологическое знание приобрело объяснительный характер. Современная биология использует генетический и системно-структурный подходы. В рамках первого рассматриваются вопросы происхождения и эволюции живой материи, причины, механизмы и особенности биогенеза. В рамках второго изучаются различные уровни организации живого, принципы их функционирования, особенности взаимосвязей и т. д. Особенностью современного этапа развития биологического знания является его тесная связь не только с другими науками естественнонаучного комплекса, но и с гуманитарным и социальным познанием. Ценностная составляющая биологического знания по мере развития этой научной дисциплины только увеличивается. Успехи биофизики и биохимии, молекулярной биологии и генетики позволяют говорить о прорыве в наших знаниях о сущности живого. Однако, все ближе подходя к разгадке тайны жизни, человечество сталкивается с множеством мировоззренческих проблем, решение которых необходимо, в том числе и в целях самосохранения и выживания. В связи с этим некоторые данные современной биологии требуют философского осмысления и интерпретации. Вместе с тем биология оказывается тесно связанной с практическими нуждами, более того, огромное число теоретических проблем возникает именно для решения конкретных практических задач: медицинских, экологических, экономических, политических и т. п. Все эти изменения свидетельствуют: в середине XX в. в биологии произошла научная революция, по масштабам сравнимая с революцией в физике и астрономии. Современная биология утверждает единство живой материи на всех уровнях, представляя мир живого как огромную систему систем, в которой каждый компонент обладает собственными специфическими свойствами и соединяется с другими особым типом связей. Развитие знаний приводит к постепенной трансформации представлений о сущности жизни, единстве космической и биологической эволюции, взаимодействии биологического и социального в человеке и т. п. Новые биологические данные изменяют ту картину мира, которая на протяжении длительного времени формировалась физикой. Открытия в биологии определяют дальнейшее развитие всего естествознания. Именно поэтому современная научная картина мира невозможна без биологических знаний. Более того, биология становится тем основанием, на котором формируются новые мировоззренческие принципы, определяющие самопонимание человека XXI в.
|
|
|
|
|
|