
- •Задачи теории игр в экономике и в области финансов.
- •Основные понятия и определения теории игр.
- •3. Игра – математическая модель антагонистической ситуации
- •4. Классификация игр по различным признакам
- •5. Матрица выигрышей. Представление игр в нормальной форме
- •6. Максиминный принцип игры
- •7. Минимаксный принцип игры
- •8. Показатели эффективности чистых стратегий. Максиминные и минимаксные стратегии.
- •9. Нижняя и верхняя цены игры в чистых стратегиях. Доказательство теоремы о сравнении нижней и верхней цен игры в чистых стратегиях. Цена игры в чистых стратегиях.
- •10. Понятие игровой ситуации. Игровая ситуация, удовлетворительная для игрока , и доказательство ее критерия. Алгоритм поиска игровых ситуаций, удовлетворительных для игрока .
- •11. Понятие игровой ситуации. Игровая ситуация, удовлетворительная для игрока , и доказательство ее критерия. Алгоритм поиска игровых ситуаций, удовлетворительных для игрока .
- •12. Ситуация равновесия. Седловая точка игры. Седловая точка матрицы выигрышей.
- •13. Доказательство теоремы о свойстве равнозначности седловых точек.
- •14. Доказательство теоремы о свойстве взаимозаменяемости седловых точек.
- •15. Стратегии, оптимальные во множестве чистых стратегий. Полное (общее) и частное решение игры в чистых стратегиях.
- •16. Соотношения между множествами оптимальных, максиминных и минимаксных стратегий. Доказательство.
- •17. Понятие смешанной стратегии.
- •18. Геометрическая интерпретация множества смешанных стратегий.
- •19. Выигрыш-функция в смешанных стратегиях и различные формулы ее представления.
- •20. Показатель эффективности смешанной стратегии игрока относительно множества смешанных стратегий игрока и доказательство теоремы о его существовании.
- •21. Показатель эффективности смешанной стратегии игрока относительно множества смешанных стратегий игрока и доказательство теоремы о его существовании.
- •24. Нижняя и верхняя цены игры в смешанных стратегиях.
- •25. Доказательство теоремы о существовании в любой конечной матричной игре нижней и верхней цен игры в смешанных стратегиях.
- •26. Доказательство теоремы о сравнении нижних и верхних цен игры в чистых и смешанных стратегиях.
- •27. Понятие стратегии, оптимальной во множестве смешанных стратегий. Основная теорема матричных игр Дж. Фон Неймана.
- •32. Доказательство теоремы о геометрической интерпретации множества стратегий игрока а, оптимальных во множестве смешанных стратегий.
- •33.Доказательство теоремы о геометрической интерпретации множества стратегий игрока , оптимальных во множестве смешанных стратегий.
- •37. Определение активных и пассивных чистых стратегий и доказательство теоремы об активных стратегий.
- •38. Определение смесей активных стратегий и доказательство теоремы о смесях активных стратегий.
- •39. Принцип доминирования. Теорема о доминирующих стратегиях и следствия из нее.
- •40. Доказательство критерия седловой точки матрицы игры размерности 2х2 на основании принципа доминирования.
- •41. Доказательство критерия седловой точки матрицы игры размерностим 2х2 в терминах пассивных стратегий.
- •42. Доказательство теоремы о признаке (достаточном условии) существования седловой точки матрицы игры размерности 2х2.
- •43. Вывод формул для нахождения оптимальных смешанных стратегий игрока а и цены игры размерности 2х2 без седловой точки.
- •44. Вывод формул для нахождения оптимальных смешанных стратегий игрока в и цены игры размерности 2х2 без седловой точки.
- •45. Аналитическое решение игры без седловой точки, задаваемой симметрической и двоякосимметрической матрицей второго порядка.
- •46. Геометрический метод нахождения оптимальных смешанных стратегий игрока и цены игры в смешанных стратегиях в игре размерности без седловой точки.
- •47. Геометрический метод нахождения оптимальных смешанных стратегий игрока и цены игры в смешанных стратегиях в игре размерности без седловой точки.
- •48. Геометрический метод нахождения оптимальных смешанных стратегий игрока и цены игры в смешанных стратегиях в игре размерности .
- •49. Доказательство формул для нахождения цены игры в смешанных стратегиях и стратегий игрока , оптимальных во множестве смешанных стратегий, в игре размерности .
- •50. Теорема о необходимом и достаточном условии оптимальности смешанной стратегии игрока в игре размерности .
42. Доказательство теоремы о признаке (достаточном условии) существования седловой точки матрицы игры размерности 2х2.
Для того чтобы у матрицы А размером 2x2 существовала седловая точка, достаточно, чтобы сумма элементов главной диагонали матрицы А равнялась сумме элементов ее побочной диагонали:
a11+a22 = a12+a21 (1)
Доказательство. Из равенства (1)
a21 = a11 - a12 + a22 (2)
Возможныслучаи:
a11<a12 (3)
или
a11>a12 (4)
В случае (3) из (2) получаем неравенство а21< а22, которое вместе с неравенством (3) означает, что второй столбец матрицы А доминируется ее первым столбцом. Тогда на основании предложения 2 следствия 11.1( Если l-й столбец матрицы игры доминируется (строго доминируется) некоторым другим столбцом, то существует (любая) оптимальная смешанная стратегия игрока В, в которую чистая стратегия В1 входит с нулевой вероятностью) существует оптимальная смешанная стратегия игрока В, в которую чистая стратегия В2 входит с нулевой вероятностью (другими словами, в данном случае стратегия В1 является оптимальной). Следовательно, стратегия В2 пассивна, и потому в силу теоремы 14.2(вопрос 41) у матрицы А существует седловая точка.
Если же имеет место случай (4), то из (2) вытекает неравенство а21> а22, которое вместе с (4) означает строгую доминируемость первого столбца матрицы А ее вторым столбцом. А потому на основании того же предложения 2 следствия 11.1(Если l-й столбец матрицы игры доминируется (строго доминируется) некоторым другим столбцом, то существует (любая) оптимальная смешанная стратегия игрока В, в которую чистая стратегия В1 входит с нулевой вероятностью) стратегия В1 является пассивной и, следовательно, по теореме 14.2 (вопрос 41) у матрицы А существует седловая точка.
43. Вывод формул для нахождения оптимальных смешанных стратегий игрока а и цены игры размерности 2х2 без седловой точки.
Так
как матрица А
не
имеет седловой точки, то нижняя цена
игры в чистых стратегиях а меньше
верхней цены игры в чистых
стратегиях
Поэтому
решения игры в чистых стратегиях не
существует и надо искать решение игры
в смешанных стратегиях.
В
этом случае в соответствии со следствием
выполняется
условие
.
Пусть
—
оптимальная смешанная стратегия игрока
A
(которая
всегда существует по основной теореме
матричных игр фон Неймана) и V
–
цена игры.
Так
как матрица А
не
имеет седловых точек, то пассивных
стратегий в игре не существует. Поэтому
стратегии В1
и
В2
активны.
Тогда
Записывая левые части этих равенств
по формуле
и присоединяя к ним нормировочное
условие
получим
систему трех линейных алгебраических
уравнений
с
тремя неизвестными
Определитель этой системы
в силу выполнимости условия . Поэтому система имеет единственное решение, которое можно найти по формулам Крамера. Для этого вычислим определители
Тогда по формулам Крамера
получаем требуемые формулы
и