- •Первая стандартная форма задачи линейного программирования имеет вид
- •Общие рекомендации к графическому решению задач лп
- •Билет 5. Базисные и Независимые Переменные. Идея симплекс-метода. Базисные допустимые решения.
- •Решение задач линейного программирования симплекс-методом
- •Решение задач с помощью надстройки Поиск решения.
- •Математическая модель транспортной задачи
- •Метод Фогеля
- •Исходные параметры модели задачи о назначениях
- •Искомые параметры
- •Модель задачи о назначениях
- •Алгоритм венгерского метода.
- •Рабочий лист
- •Формулы в таблице
- •Изменение числа поставщиков и потребителей
- •Итоговое решение
- •Однопродуктовая статическая модель
- •Диаграмма Ганта
- •Гибкое представление данных
- •Визуальные настройки и представление
- •Удобство использования
- •Минимальное остовное дерево – это остовное дерево этого графа, имеющее минимальный возможный вес, где под весом дерева понимается сумма весов входящих в него рёбер. Области применения
- •Билет 40. Найти минимальные пути между всеми парами вершин, используя алгоритм Флойда.
- •Замкнутый и незамкнутый варианты задачи
- •Методы решения Простейшие
Решение задач линейного программирования симплекс-методом
Если вам понадобится решить задачу линейного программирования с помощью симплекс-таблиц, то наш онлайн сервис вам окажет большую помощь. Симплекс-метод подразумевает последовательный перебор всех вершин области допустимых значений с целью нахождения той вершины, где функция принимает экстремальное значение. На первом этапе находится какое-нибудь решение, которое улучшается на каждом последующем шаге. Такое решение называется базисным. Приведем последовательность действий при решении задачи линейного программирования симплекс-методом:
Первый шаг. В составленной таблице необходимо просмотреть столбец со свободными членами. Если в нем имеются отрицательные элементы, то необходимо осуществить переход ко второму шагу, есле же нет, то к пятому.
Второй шаг. На втором шаге необходимо определиться, какую переменную изключить из базиса, а какую включить, для того, что бы произвести перерасчет симплекс-таблицы. Для этого просматриваем столбец со свободными членами и находим в нем отрицательный элемент. Строка с отрицательным элементом будет называться ведущей. В ней находим максимальный по модулю отрицательный элемент, соответсвующий ему столбец - ведомый. Если же среди свободных членов есть отрицательные значения, а в соответсвующей строке нет, то такая таблица не будет иметь решений. Переменая в ведущей строке, находящаяся в столбце свободных членов исключается из базиса, а переменная соответсвующая ведущему столцу включается в базис.
Третий шаг. На третьем шаге пересчитываем всю симплекс-таблицу по специальным формулам..
Четвертый шаг. Если после перерасчета в столбце свободных членов остались отрицаетельные элементы, то переходим к первому шагу, если таких нет, то к пятому.
Пятый шаг. Если Вы дошли до пятого шага, значит нашли решение, которое допустимо. Однако, это не значит, что оно оптимально. Оптимальным оно будет только в том случае, если положительны все элементы в F-строке. Если же это не так, то необходимо улучшить решение, для чего находим для следующего перерасчета ведущие строку и столбец по следующему алгоритму. Первоначально, находим минимальное отрицательное число в строке F, исключая значение функции. Столбец с этим числом и будем ведущим. Для того, что бы найти ведущую строку, находим отношение соответсвующего свободного члена и элемента из ведущего столбца, при условии, что они положительны. Минимальное отношение позволит определить ведущую строку. Вновь пересчитываем таблицу по формулам, т.е. переходим к шагу 3.
Шестой шаг. Если невозможно найти ведущую строку, так как нет положительных элементов в ведущем столбце, то функция в области допустимых решений задачи не ограничена сверху и Fmax->∞. Если в строке F и в столбце свободных членов все элементы положительные, то найдено оптимальное решение.
Тонкости симплекс метода
1) Когда прямая (если рассматривается двухмерная задача линейного программирования, а в общем случае гиперплоскость), представляющая целевую функцию параллельна прямой (гиперплоскости), соответствующей одному из неравенств-ограничений (которое в точке оптимума выполняется, как точное равенство) целевая функция принимает одно и тоже оптимальное значение на некотором множестве точек границы области допустимых решений. Эти решения называются альтернативными оптимальными решениями. Наличие альтернативных решений можно определить по оптимальной симплекс-таблице. Если в z-строке оптимальной таблицы есть нулевые коэффициенты небазисных переменных, то есть альтернативные решения.
2) Если в разрешающем столбце симплекс-таблицы все коэффициенты меньше или равны нуль, то нельзя выбрать разрешающую строку, в этом случае решение неограничено.
3) Если ограничения задачи линейного программирования несовместны (т.е. они не могут выполняться одновременно), то задача не имеет допустимых решений. Такая ситуация не может возникнуть, если все неравенства, составляющие систему ограничений, имеют тип " ≤ " с неотрицательными правыми частями, т.к. в этом случае дополнительные переменные могут составить допустимое решение. Для других типов ограничений использются искусственные переменные. Если задача имеет решение, то в оптимальной таблице в базисе нет искусственных переменных (Ri). Если они там есть, то задача не имеет решений.
Билет 7. Электронные таблицы
