
- •1.Принципиальная основа выделения царств Прокариот и Эукариот.
- •2. Специфические особенности прокариот.
- •3. Роль прокариот в природе и жизни человека.
- •4. Морфологические типы, размеры и особенности размножения бактерий.
- •5. Клеточная стенка бактерий, ее строение и функции.
- •6. Цитоплазматическая мембрана, функции.
- •7. Цитоплазма. Цитоплазматические включения: ограниченные и неограниченные внутренней мембраной.
- •8. Нуклеоид. Плазмиды бактерий, типы и их функции. Пути генетической изменчивости.
- •9.Капсула, её значение.
- •10. Жгутики. Движение бактерий.
- •11. Фимбрии.
- •12. Спорообразование у бактерий, его типы и биологический смысл.
- •13. Рост бактериальной популяции. Фазы роста.
- •14.Химический состав бактериальной клетки. Химический состав питательного субстрата прокариот. Понятия ауксотрофности и прототрофности, олиготрофности и копиотрофности.
- •15. Питательные среды, методы стерилизации
- •16.Пути поступления питательных веществ в бактериальную клетку.
- •17.Особенности бактериального фотосинтеза.
- •18. Фотолитоавтотрофы.
- •19. Фотоорганогетеротрофы.
- •Хемолитоавтотрофный тип питания прокариот
- •Хемоорганогетеротрофы
- •Ферменты цепи электронного транспорта.
- •Эволюция типов дыхания прокариот. Критерии выхода на аэробную жизнь. Пути эволюции аэробов.
- •24. Брожение и его типы. Три пути гликолиза.
- •25 Молочнокислое брожение. Микрофлора молока и кисломолочных продуктов.
- •26. Спиртовое брожение. Химизм. Значение в народном хозяйстве.
- •27. Типичное маслянокислое брожение.
- •28. Аэробное дыхание. Прямое полное окисление органического субстрата.
- •29. Аэробное дыхание. Прямое неполное окисление органического субстрата.
- •30. Аэробное дыхание. Прямое полное окисление неорганического субстрата.
- •31. Вторично-анаэробное дыхание прокариот. Нитратное и сульфатное дыхание.
- •32. Открытие домена Археи. Характеристика их групп. Современный взгляд на единое филогенетическое древо организмов.
- •33. Принципиальная основа выделения доменов Бактерии и Археи.
- •34. Эндосимбиогенная теория происхождения эукариот. Происхождение митохондрий, пластид и рибосом в эукариотической клетке.
- •Доказательства
- •Проблемы
- •35. Филогенетическая система классификации микроорганизмов. Домены и филы архей, прокариот и эукариот. Штамм и клон.
- •36. Влияние физических и химических факторов среды на прокариот.
- •37 Типы взаимодействия микроорганизмов друг с другом
- •38. Взаимодействие бактерий и растений. Типы микробо-растительных ассоциаций.
- •39. Взаимодействие бактерий и животных.
- •40. Микрофлора организма человека.
- •41. Микрофлора атмосферы и воздуха помещений.
- •42. Микрофлора открытых водоемов и питьевой воды. Зоны сапробности. Системы очистки. Санитарный контроль.
- •43. Микрофлора почвы. Динамика численности и закономерности распределения микроорганизмов в почве.
- •44. Роль прокариот в процессах трансформации азотсодержащих веществ.
- •45. Аэробная и анаэробная аммонификация белка. Аммонификация мочевины.
- •46. Нитрификация и ее биологический смысл.
- •47. Денитрификация и ее оценка для круговорота азота и земледелия.
- •48. Характеристика свободноживущих, симбиотических и ассоциативных азотфиксаторов. Роль биологического азота в продуктивности экосистем.
- •49. Симбиотические азотфиксаторы. Цикл развития. Взаимоотношения с растениями.
- •50. Химизм биологической азотфиксации.
- •51. Азотная автотрофия. Типы диазотрофов. Основные бактериальные препараты на основе азотфиксирующих штаммов бактерий.
- •52. Анаэробное и аэробное разложение клетчатки. Роль прокариот в процессе круговорота углерода.
- •53.Характеристика риккетсий как связующего звена прокариот и вирусов. Актиномицеты как связующее звено бактерий и низших грибов. Микоплазмы как связующее звено прокариот и эукариот.
- •54. Взаимоотношения грибов с растениями. Микориза и ее типы.
- •55. Вирусы. Отличие вирусов от про- и эукариот.
- •56. Строение вириона на примере вирусов гриппа, втм, вич, геппатита в и др.
- •57. Капсид вирусов и его функции. Суперкапсид вирусов и его функции.
- •58. Нуклеиновые кислоты вирусов.
- •59. Пути хемосорбции вирусов. Вирусные рецепторы и ферменты.
- •60. Цикл репродукции рнк-геномных вирусов.
- •61. Цикл репродукции днк-геномных вирусов.
- •62. Вирусный канцерогенез. Ретровирусы.
- •63. Вирусные инфекции. Профилактика и лечение.
- •64. Вироиды и прионы.
16.Пути поступления питательных веществ в бактериальную клетку.
Бактериальные клетки не имеют специальных органов питания, т. е. являются галофитными.
Поступление питательных веществ в микробную клетку может происходить за счет:
• осмоса и диффузии по градиенту концентрации без затрат энергии;
• пассивного транспорта, который также осуществляется по градиенту концентрации с помощью белков-переносчиков, но без затрат клеткой энергии, и отличается от диффузии большей скоростью;
• активного транспорта, который идет против градиента концентрации с затратой энергии и возможным частичным расщеплением субстрата, осуществляется белками-переносчикамиили ферментами — пермеазами.
По источникам углерода, необходимого для построения биополимеров, бактерии делятся на следующие группы:
• автотрофы — микроорганизмы, которые используют как единственный источник углерода углекислый газ и не нуждаются в сложных органических соединениях;
• гетеротрофы — микроорганизмы, которые используют в качестве источника углерода разнообразные органические углеродосодержащие соединения (углеводы, углеводороды, аминокислоты, органические кислоты) как биологического, так и небиологического происхождения.
В зависимости от источника получения энергии микроорганизмы делятся:
• на фототрофные, способные использовать солнечную энергию,
• хемотрофные, получающие энергию за счет окислительно-восстановительных реакций
В зависимости от природы доноров электронов:
• фототрофные литотрофы;
• хемотрофные литотрофы — использующие в качестве доноров электронов неорганические соединения;
• фото- и хемоорганотрофы — использующие только органические соединения. К последним принадлежит значительное большинство бактерий, в том числе патогенные для человека виды. По источникам азота:
• азотфиксирующие микроорганизмы — способны усваивать молекулярный азот атмосферы;
• микроорганизмы, ассимилирующие неорганический азот:
• солей аммония — аммонифицирующие;
• нитратов — нитратредуцирующие;
• нитритов — нитритредуцирующие.
Однако большинство патогенных для человека микроорганизмов способны ассимилировать только азот органических соединений.
Микроорганизмы, способные синтезировать все необходимые им органические соединения (углеводы, аминокислоты и др.) из указанных компонентов, называются прототрофами.
Микроорганизмы, неспособные синтезировать какое-либо из необходимых соединений и ассимилирующие их в готовом виде из окружающей среды или организма хозяина (человека, животного), называются ауксотрофами по этому соединению. Чаще всего ими являются патогенные или условно-патогенные для человека микроорганизмы.
17.Особенности бактериального фотосинтеза.
Свет в качестве первичного источника энергии могут использовать три главные группы бактерий - зеленые и пурпурные серные бактерии (Chlorobiaceae и Chromatiaceae) и. пурпурные несерные бактерии (Rhodospirillaceae).
Отличия от раст. фотосинтеза
1, бактерии - не способны использовать в качестве конечного восстановителя воду. Они используют другие восстановители, которыми могут быть органические молекулы или неорганические соединения серы, и, следовательно, бактерии не выделяют кислород.
2, фиксация и метаболизм углерода у бактерий происходят не в цикле Кальвина - Бенсона, а иным путем.
3, аппарат первичного улавливания света и переноса электронов у них совершенно отличен от наблюдающихся в растительных клетках; в частности, у них протекает только одна световая реакция, правда, она во многом сходна с реакцией в фотосистеме I растений.
Вместе с тем механизм улавливания света у бактерий очень сходен с соответствующим механизмом у растений, хотя фотосинтетические единицы у первых меньше.
Главным фотоактивным пигментом является бактериохлорофилл (БХл), в большинстве случаев бактериохлорофилл а, а в некоторых случаях (например, у бактерии Rhodopseudomonas sphaeroides) - бактериохлорофилл b. Каротиноиды в фотосинтезирующих бактериях представлены характерными для них ациклическими метокси- или арил-каротиноидами, например спириллоксантином (10.17) у Rhodospirillum rubram. Собирающая свет антенна передает энергию возбуждения на БХл реакционного центра, который поглощает при 870- 875 нм у Rhodospirillaceae и при 890 нм у Chromatiaceae. БХл реакционного центра, Р-870 или Р-875 аналогичны Р-700, или хлорофиллу a, ФС I высших растений. Бактериальный реакционный центр содержит три полипептида ассоциированных с четырьмя молекулами бактериохлорофилла, две молекулы бактериофеофитина (10.18), одну молекулу убихинона (10.19) и негемовое железо. В небольшом количестве в реакционном центре обнаруживаются также каротиноиды, входящие в состав светособирающего комплекса антенны.
В тесной связи с реакционным центром находится главная светособирающая антенна, которая у Rhodospirillaceae поглощает при 875 нм. Этот комплекс включает два полипептида, а также бактериохлорофилл и каротиноиды в соотношении 1 : 1. Соотношение БХл: реакционные центры остается постоянным и составляет около 25: 1. У некоторых видов, например у Rhodospirillum rubrum, имеется только один светособирающий комплекс, тогда как у других организмов, например, у Rhodopseudotnonas spp., содержится и второй подобный комплекс, поглощающий при более коротких длинах волн (800 и 850 нм). Он включает два пептида, две формы бактериохлорофилла - (две молекулы БХл-850 и одну молекулу БХл-800) и одну молекулу каротиноида.
В первичной световой реакции энергия возбуждения переносится на Р-870 и один электрон передается от бактериохлорофилла "особой пары" на акцептор. Окисленный Р-870 в свою очередь получает электрон от молекулы донора. В заключение следует отметить, что электронтранспортныс цепи у разных видов бактерий различаются в деталях. Наиболее подробно учёные их изучали у Rhodospirillum rubrutn, у нескольких видов Rhodopscudomonas (R. sphaeroides, R. capsulata, R. palustris) из Rhodospiriilaceae и у некоторых видов Chromatiutn и Chlorobium из классов серных бактерий. У всех этих бактерий в цепи переноса электронов участвует несколько цитохромов, тогда как плаетоцианин, по-видимому, не используется. Те функции, которые иластоцианин выполняет у растений, у бактерий может выполнять убихинон.