
- •1.Принципиальная основа выделения царств Прокариот и Эукариот.
- •2. Специфические особенности прокариот.
- •3. Роль прокариот в природе и жизни человека.
- •4. Морфологические типы, размеры и особенности размножения бактерий.
- •5. Клеточная стенка бактерий, ее строение и функции.
- •6. Цитоплазматическая мембрана, функции.
- •7. Цитоплазма. Цитоплазматические включения: ограниченные и неограниченные внутренней мембраной.
- •8. Нуклеоид. Плазмиды бактерий, типы и их функции. Пути генетической изменчивости.
- •9.Капсула, её значение.
- •10. Жгутики. Движение бактерий.
- •11. Фимбрии.
- •12. Спорообразование у бактерий, его типы и биологический смысл.
- •13. Рост бактериальной популяции. Фазы роста.
- •14.Химический состав бактериальной клетки. Химический состав питательного субстрата прокариот. Понятия ауксотрофности и прототрофности, олиготрофности и копиотрофности.
- •15. Питательные среды, методы стерилизации
- •16.Пути поступления питательных веществ в бактериальную клетку.
- •17.Особенности бактериального фотосинтеза.
- •18. Фотолитоавтотрофы.
- •19. Фотоорганогетеротрофы.
- •Хемолитоавтотрофный тип питания прокариот
- •Хемоорганогетеротрофы
- •Ферменты цепи электронного транспорта.
- •Эволюция типов дыхания прокариот. Критерии выхода на аэробную жизнь. Пути эволюции аэробов.
- •24. Брожение и его типы. Три пути гликолиза.
- •25 Молочнокислое брожение. Микрофлора молока и кисломолочных продуктов.
- •26. Спиртовое брожение. Химизм. Значение в народном хозяйстве.
- •27. Типичное маслянокислое брожение.
- •28. Аэробное дыхание. Прямое полное окисление органического субстрата.
- •29. Аэробное дыхание. Прямое неполное окисление органического субстрата.
- •30. Аэробное дыхание. Прямое полное окисление неорганического субстрата.
- •31. Вторично-анаэробное дыхание прокариот. Нитратное и сульфатное дыхание.
- •32. Открытие домена Археи. Характеристика их групп. Современный взгляд на единое филогенетическое древо организмов.
- •33. Принципиальная основа выделения доменов Бактерии и Археи.
- •34. Эндосимбиогенная теория происхождения эукариот. Происхождение митохондрий, пластид и рибосом в эукариотической клетке.
- •Доказательства
- •Проблемы
- •35. Филогенетическая система классификации микроорганизмов. Домены и филы архей, прокариот и эукариот. Штамм и клон.
- •36. Влияние физических и химических факторов среды на прокариот.
- •37 Типы взаимодействия микроорганизмов друг с другом
- •38. Взаимодействие бактерий и растений. Типы микробо-растительных ассоциаций.
- •39. Взаимодействие бактерий и животных.
- •40. Микрофлора организма человека.
- •41. Микрофлора атмосферы и воздуха помещений.
- •42. Микрофлора открытых водоемов и питьевой воды. Зоны сапробности. Системы очистки. Санитарный контроль.
- •43. Микрофлора почвы. Динамика численности и закономерности распределения микроорганизмов в почве.
- •44. Роль прокариот в процессах трансформации азотсодержащих веществ.
- •45. Аэробная и анаэробная аммонификация белка. Аммонификация мочевины.
- •46. Нитрификация и ее биологический смысл.
- •47. Денитрификация и ее оценка для круговорота азота и земледелия.
- •48. Характеристика свободноживущих, симбиотических и ассоциативных азотфиксаторов. Роль биологического азота в продуктивности экосистем.
- •49. Симбиотические азотфиксаторы. Цикл развития. Взаимоотношения с растениями.
- •50. Химизм биологической азотфиксации.
- •51. Азотная автотрофия. Типы диазотрофов. Основные бактериальные препараты на основе азотфиксирующих штаммов бактерий.
- •52. Анаэробное и аэробное разложение клетчатки. Роль прокариот в процессе круговорота углерода.
- •53.Характеристика риккетсий как связующего звена прокариот и вирусов. Актиномицеты как связующее звено бактерий и низших грибов. Микоплазмы как связующее звено прокариот и эукариот.
- •54. Взаимоотношения грибов с растениями. Микориза и ее типы.
- •55. Вирусы. Отличие вирусов от про- и эукариот.
- •56. Строение вириона на примере вирусов гриппа, втм, вич, геппатита в и др.
- •57. Капсид вирусов и его функции. Суперкапсид вирусов и его функции.
- •58. Нуклеиновые кислоты вирусов.
- •59. Пути хемосорбции вирусов. Вирусные рецепторы и ферменты.
- •60. Цикл репродукции рнк-геномных вирусов.
- •61. Цикл репродукции днк-геномных вирусов.
- •62. Вирусный канцерогенез. Ретровирусы.
- •63. Вирусные инфекции. Профилактика и лечение.
- •64. Вироиды и прионы.
31. Вторично-анаэробное дыхание прокариот. Нитратное и сульфатное дыхание.
Анаэробное дыхание — биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной электротранспортной цепи в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.
Осуществляется прокариотами (в редких случаях — и эукариотами) в анаэробных условиях. При этом факультативные анаэробы используют акцепторы электронов с высоким окислительно-восстановительным потенциалом (NO3−, NO2−, Fe3+, фумарат, диметилсульфоксид и т. д.), у них это дыхание конкурирует с энергетически более выгодным аэробным и подавляется кислородом. Акцепторы с низким окислительно-восстановительным потенциалом (сера, SO42−, CO2) применяются только строгими анаэробами, гибнущими при появлении в среде кислорода. В корневых системах многих растений при гипоксии и аноксии, вызванных затоплением посевов в результате длительных дождей или весенних паводков, развивается анаэробное дыхание с использованием в качестве акцепторов электронов альтернативных кислороду соединений, например нитратов. Установлено, что растения, произрастающие на полях, удобренных нитратными соединениями, переносят переувлажнение почвы и сопутствующую ему гипоксию лучше, нежели такие же растения без нитратной подкормки.
Механизмы окисления органических субстратов при анаэробном дыхании, как правило, аналогичны механизмам окисления при аэробном дыхании. Исключением является использование в качестве исходного субстрата ароматических соединений. Обычные пути их катаболизма требуют молекулярного кислорода уже на первых стадиях, в анаэробных условиях осуществляются иные процессы, например, восстановительная деароматизация бензоил-КоА у Thauera aromatica с затратой энергии АТФ. Некоторые субстраты (например,лигнин) при анаэробном дыхании не могут использоваться.
Нитратное дыхание: Прокариоты обладают возможностью использовать в качестве акцептора электрона в дыхательной электронтранспортной цепи (ЭТЦ) вместо кислорода различные окисленные соединения азота. Ферментом, катализирующим финальную стадию транспорта электрона — его перенос на нитрат-анион — является нитратредуктаза. При использовании нитритов ферментов и путей его восстановления два:
NO-образующая нитритредуктаза восстанавливает нитрит до оксида азота (II). Это одна из стадий денитрификации.
NH3-образующая нитритредуктаза восстанавливает нитрит до иона аммония, что является заключительной стадией диссимиляционного восстановления нитратов в аммоний или, как его называют в иностранной литературе, диссимиляционной или дыхательной аммонификации (в отечественной литературой аммонификацией называется процесс высвобождения аммиака из состава органических соединений, например, белков). Надо отметить, что ассимиляционное восстановление нитратов в аммоний (ассимиляционная нитратредукция или просто ассимиляция) — процесс включения нитратов после восстановления до аммония в состав органических веществ, широко распространённый у прокариот и некоторых групп эукариот (грибы, растения) — не сопряжён с получением энергии.
НАД·H, образовавшийся при гликолизе, в ЦТК или по иным механизмам и поступающий в дыхательную ЭТЦ, окисляется обычно НАД·H:убихинон-оксидоредуктазой, являющейся протонной помпой. Терминальные оксидоредуктазы, переносящие электрон на конечный акцептор, в отличие от цитохромоксидазы аэробной ЭТЦ, обычно не являются протонной помпой. Однако при переносе нитратредуктазой электрона с убихинона (или у ряда видов менахинона) на нитрат-анион происходит выделение двух протонов в периплазму (с убихинона) и связываение двух протонов в воду в цитоплазме. Таким образом создаётся дополнительный протонный градиент.
Аналогичным образом, связывая протоны в цитоплазме, создаёт градиент электрохимического потенциала нитритредуктаза. В то же время NO-редуктаза связывает протоны из периплазмы и её работа не сопряжена с образованием градиента потенциала.
Больше путей переноса протонов через мембрану анаэробная ЭТЦ не содержит (в аэробной же их 3), в связи с чем нитратное дыхание по эффективности в расчёте на 1 моль глюкозы составляет лишь 70 % от аэробного. При поступлении в среду молекулярного кислорода бактерии переключаются на обычное дыхание.
Нитратное дыхание встречается, хотя и редко, и среди эукариот. Так, нитратное дыхание, сопровождающееся денитрификацией и выделением молекулярного азота, недавно открыто у фораминифер. До этого нитратное дыхание с образованием N2O было описано у грибов Fusariumи Cylindrocarpon.
Сульфатное дыхание: В настоящее время известен ряд бактерий, способных окислять органические соединения или молекулярный водород в анаэробных условиях, используя в качестве акцепторов электронов в дыхательной цепи сульфаты, тиосульфаты, сульфиты, молекулярную серу. Этот процесс получил название диссимиляционной сульфатредукции, а бактерии, осуществляющие этот процесс — сульфатвосстанавливающих или сульфатредуцирующих.
Все сульфатвосстанавливающие бактерии — облигатные анаэробы.
Сульфатвосстанавливающие бактерии получают энергию в процессе сульфатного дыхания при переносе электронов в электронтранспортной цепи. Перенос электронов от окисляемого субстрата по электронтранспортной цепи сопровождается возникновением электрохимического градиента ионов водорода с последующим синтезом АТФ.
Подавляющее большинство бактерий этой группы хемоорганогетеротрофы. Источником углерода и донором электронов для них являются простые органические вещества — пируват,лактат, сукцинат, малат, а также некоторые спирты. У некоторых сульфатвосстанавливающих бактерий обнаружена способность к хемолитоавтотрофии, когда окисляемым субстратом является молекулярный водород.
Сульфатвосстанавливающие эубактерии широко распространены в анаэробных зонах водоёмов разного типа, в иле, в почвах, в пищеварительном тракте животных. Наиболее интенсивно восстановление сульфатов происходит в соленых озерах и морских лиманах, где почти нет циркуляции воды, и содержится много сульфатов. Сульфатвосстанавливающим эубактериям принадлежит ведущая роль в образовании сероводорода в природе и в отложении сульфидных минералов. Накопление в среде H2S часто приводит к отрицательным последствиям — в водоемах к гибели рыбы, в почвах к угнетению растений. С активностью сульфатвосстанавливающих эубактерий связана также коррозия в анаэробных условиях различного металлического оборудования, например, металлических труб.
Для процессов дыхания необходим в качестве окислителя кислород. Если присутствует молекулярный кислород - дыхание называется Аэробным. Если окислителем является связанный кислород - дыхание называется Анаэробным. Конечным акцептором водорода и электронов может быть кислород нитратов или сульфатов (NO3 или SO4). В качестве энергетических субстратов бактерии могут использовать углеводы, спирты, органические кислоты и др. Выделяют два основных типа анаэробного дыхания:
1) Нитратное дыхание (окислителем является кислород нитратов) – проходит по схеме:
С6Н12О6 + 4NO3-→ 6СО3 + 6Н2О +2N2↑ +E
Процесс носит название денитрификации. Возбудителями являются факультативно-анаэробные бактерии такие как Pseudomonas aeruginosae, ParacocСUs DenitrificАNs.
2) Сульфатное дыхание (окислителем является кислород сульфатов) – проходит по схеме:
C6H12O6 + 3H2SO4→6CO2 + 6H2O + 3H2S↑ + E
Процесс носит название десульфофикации. Возбудителями являются облигатные анаэробы вида Desulfovibrio Desulfuricans.