
- •Раздел 2 1. Аллостерическая модуляция
- •2. Ковалентная модификация
- •3. Белок-белковое взаимодействие
- •4. Роль конкурентного и неконкурентного ингибирования в регуляции активности ферментов в клетке
- •5. Перенос веществ через клеточные мембраны
- •Раздел 3 1.
- •2. Клетки-мишени и рецепторы гормонов
- •3. Рилизинг-гормоны (либерины)
- •Раздел 4. 1. Инсулин
- •2.Тиронины
- •3.Адреналин
- •4. Глюкагон
- •5. Кортизол
4. Роль конкурентного и неконкурентного ингибирования в регуляции активности ферментов в клетке
Эти варианты механизмов регуляции активности ферментов в клетках используются крайне редко. Примером конкурентного ингибирования, используемого в клетке для регуляции собственного метаболизма, принято считать угнетение активности сукцинатдегидрогеназы фермента цикла трикарбоновых кислот высокими концентрации щавелевоуксусной кислоты или малата, являющимися промежуточными продуктами того же самого метаболического пути. Снижение их концентрации в матриксе митохондрий, где работает этот метаболический путь, снимает ингибирование, т.е. регуляторный эффект обратим.
Необходимо иметь в виду, что лекарственные препараты часто являются конкурентными или неконкурентными ингибиторами различных ферментов. Так, лекарственный препарат алллопуринол, используемый при лечении подагры, является типичным конкурентным ингибитором фермента ксантиноксидазы, работающей в клетке на завершающем этапе метаболического пути синтеза мочевой кислоты. Снижение активности этого фермента приводит к падению концентрации мочевой кислоты в крови и тканях и предотвращает характерное для подагры повторное выпадение кристаллов мочевой кислоты в тканях.
Лекарственный препарат строфантин G, используемый при лечении острой сердечной недостаточности, является неконкурентным ингибитором К,Na-АТФ-азы наружных клеточных мембран миокардиоцитов. Существует мнение, что лечебный эффект этого лекарственного препарата обусловлен нормализацией ионного состава внутренней среды миокардиоцитов в результате коррекции активности этого мембранного фермента.
Среди множества ферментов, имеющихся в клетке, далеко не все являются регуляторными. Тем не менее, практически в каждый метаболический путь включены один или несколько (2, иногда даже 3) ферментов, контролирующих интенсивность потока метаболитов по тому или иному метаболическому пути. Эти ферменты обычно катализируют необратимые по термодинамическим причинам реакции; они часто являются ферментами, имеющими наиболее низкую каталитическую активность среди всех ферментов данного метаболического пути, и поэтому контролируют интенсивность потока вещества по данному метаболическому пути в целом; они обычно катализируют одну из первых реакций данного метаболического пути, что предотвращает накопление промежуточных продуктов метаболического пути в клетке при снижении активности фермента. Такого рода ферменты, контролирующие поток метаболитов по метаболическому пути и способные отвечать изменениями активности на регуляторные воздействия, получили название "ключевых ферментов"; иногда их также называют "ферментами водителями ритма". Примерами таких ферментов могут служить аспартаткарбамоилтрансфераза (метаболический путь синтеза пиримидиновых нуклеотидов), фосфофруктокиназа (гликолиз) или изоцитратдегидрогеназа (цикл трикарбоных кислот Кребса).
5. Перенос веществ через клеточные мембраны
Клетка для регуляции своего метаболизма может использовать изменение проницаемости мембран, в том числе как проницаемость как наружной мембраны, так и мембран, разделяющих ее отдельные компартменты. Тем самым может регулироваться как концентрация субстратов для того или иного метаболического пути (например, концентрация ацетил-КоА в цитозоле для синтеза высших жирных кислот, поступающего из матрикса митохондрий), так и концентрация кофакторов, поступающих из одного компартмента клетки в другой (например, АДФ, поступающего из цитозоля в матрикс митохондрий).
Перенос веществ через клеточные мембраны может осуществляться за счет процессов трех основных типов:
а) простой диффузии,
б) облегченной диффузии,
в) активного транспорта.
Интенсивность простой диффузии, т.е. переноса веществ через мембрану по градиенту концентрации через липидный бислой или через каналы в липидном бислое, регулируется, во-первых, за счет изменения конформационного состояния мембраны или ее микровязкости, во-вторых, за счет изменения концентрации переносимого метаболита по разные стороны мембраны. Состояние мембраны может изменяться за счет изменения ее состава, например, за счет изменения содержания холестерола в мембранах, а изменение градиента концентрации метаболита относительно мембраны может изменяться путем его наработки или использования в одном из компартментов клетки.
Регуляция облеченной диффузии, т.е. переноса веществ через мембрану по градиенту концентрацию с участием переносчика, осуществляется как за счет действия ранее указанных факторов, так и за счет двух новых механизмов: изменения содержания переносчика в мембране или же за счет изменения функционального состояния состояния имеющихся переносчиков. Так, при воздействии инсулина на клетки, имеющие рецепторы к этому гормону, в их наружных мембранах увеличивается количество белков-переносчиков глюкозы. Изменение интенсивности активного транспорта, т.е. переноса веществ через мембраны с участием переносчика против градиента концентрации, идущего с затратами энергии, происходит, во-первых, за счет работы механизмов, регулирующих процессы облегченной диффузии, а, во-вторых, за счет изменения количества доступной энергии. В свою очередь, поступление энергии осуществляется или за счет обеспечения механизмов транспорта энергией АТФ, или же за счет создаваемых клеткой трансмембранных электрохимических градиентов, например, градиентов Н+ или градиентов ионов Na+.
Таким образом, в ходе эволюции природой были созданы разнообразные механизмы, позволяющие клеткам регулировать как интенсивность обменных процессов в целом, так и механизмы избирательной регуляции работы того или иного метаболического пути. Все регуляторные механизмы, работающие в организме можно разделить на два уровня: 1. Механизмы, обеспечивающие регуляцию на уровне отдельных клеток или внутриклеточные регуляторные механизмы.
2. Механизмы, обеспечивающие регуляцию обменных процессов на уровне целого организма надклеточные регуляторные механизмы.
Каждый из этих уровней может быть разделен на подуровни. Так, в рамках внутриклеточного уровня регуляции могут быть выделены подуровни:
подуровень отдельных химических реакций,
подуровень метаболических путей,
подуровень клеточных органелл,
подуровень сети метаболических путей. А надклеточный уровень регуляции может быть разделен на подуровни:
подуровень той или иной ткани
подуровень того или иного органа
подуровень системы органов
подуровень целого организма.