- •1. Электрическое поле. Закон Кулона.
- •2. Напряженность электрического поля. Непрерывное распределение зарядов. Принцип суперпозиции полей.
- •3. Электростатическая теорема Гаусса.
- •4. Потенциал электростатического поля. Энергия системы зарядов.
- •5. Диполь.
- •6. Электрическое поле в диэлектриках
- •7. Электрическая индукция.
- •8. Механизмы поляризации диэлектриков.
- •9. Электрическое поле в проводниках.
- •10. Электроемкость. Конденсаторы.
- •11. Конденсаторы. Соединение конденсаторов.
- •12. Энергия заряженного конденсатора. Энергия поля.
- •13. Электрический ток. Уравнение непрерывности.
- •14. Сторонние силы. Закон Ома в интегральной и дифференциальной формах.
- •15. Разветвленные цепи. Правила Кирхгофа.
- •16. Мощность тока.
- •17. Закон Джоуля-Ленца.
- •18. Магнитное поле. Сила Ампера.
- •19. Закон Био-Савара-Лапласа.
- •20. Магнитное поле прямолинейного проводника с током.
- •21. Магнитное поле кругового тока.
- •22. Магнитное поле соленоида.
- •23. Сила электрического тока.
- •24. Поле движущегося заряда.
- •25. Поле тороида и соленоида.
- •26. Контур с током в магнитном поле.
- •27. Работа, совершаемая при перемещении проводника с током в магнитном поле.
- •28. Сила Лоренца
- •29. Электромагнитная индукция
- •30. Вихревые токи (токи Фуко)
- •31. Явление самоиндукции
- •32. Взаимная индукция.
- •33. Энергия магнитного поля
- •34. Магнитное поле в магнетиках
- •35. Диамагнетизм
- •36. Парамагнетики
- •37. Ферромагнетики.
- •38. Магнитные в электроэнергетике
- •39. Уравнение Максвелла
- •40. Колебательный контур. Свободные электромагнитные колебания.
- •41. Вынужденные колебания в контуре
- •42. Векторные диаграммы.
- •43. Переменный ток.
- •44. Трансформатор
- •45. Способы повышения коэффициента мощности
- •46. Резонанс в цепи переменного тока.
- •47. Бегущая и стоячая плоские волны
- •48. Давление, импульс и масса электромагнитного поля
- •49. Излучение электромагнитной волны диполем.
- •50. Экспериментальные исследования электромагнитных волн
- •51. Шкала электромагнитных волн
- •53. Диэлектрические потери
- •54. Электрический ток в вакууме. Электронная эмиссия
- •55. Термоэлектронная эмиссия. Формула Ричардсона-Дешмана
- •60. Искровой разряд. Молния
- •61. Дуговой разряд
- •62. Коронный разряд
- •63. Плазма.
- •64. Классическая электронная теория металлов
- •65. Закон Видемана-Франца. Ограниченность классической теории
46. Резонанс в цепи переменного тока.
Рассмотрим цепь переменного тока, содержащую параллельно включенные конденсатор емкостью С и катушку индуктивностью L. Для простоты допустим, что активное сопротивление обеих ветвей настолько мало, что им можно пренебречь. Если приложенное напряжение изменяется по закону U=Umcost, то в ветви течет ток I1=Im1cos(t-1), амплитуда которого определяется при условии R=0 и L=0: Im1=Um/(1/ωC)
Аналогично, сила тока во второй ветви I2=Im2cos(t-2),
амплитуда которого определяется при условии R=0 и С=: Im2=Um/(L).
Im=│Im1,-Im2│=Um│C-l/(L)│.
Если =рез=1/LС, то Im1=Im2 и Im=0.
Явление резкого уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включенные конденсатор и катушку индуктивности, при приближении частоты приложенного напряжения к резонансной частоте рез называется резонансом токов (параллельным резонансом). Рассмотренный контур оказывает большое сопротивление переменному току с частотой, близкой к резонансной, поэтому это свойство резонанса токов используется в резонансных усилителях, позволяющих выделять одно определенное колебание из сигнала сложной формы.
47. Бегущая и стоячая плоские волны
Бегущими волнами называются волны, которые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности потока энергии. Волна называется плоской, потому что ее волновые процессы распространяются в плоскости. Электромагнитная волна – поперечная. Плоские волновые процессы распространяются вдоль плоскости V. Решение можно записать в виде бегущей волны: E=Emcos(ωt±kx+φ0), Н=Нmcos(ωt±kx+φ0), ω – частота волны, φ0 – начальная фаза, которую можно всегда обнулить, выбрав т.о. начало отсчета координат и времени. k=2π/λ – это волновое число, λ – длина волны. Знак "-" соответствует волне, бегущей в положительном направлении оси X, знак "+" в отрицательном. Vp=ω/k. Рассмотрим волну, в результате наложения двух когерентных волн, бегущих в противоположных направлениях. E=2Emcosωtcoskx, такая волна не переносит энергию и называется стоячей.
48. Давление, импульс и масса электромагнитного поля
Электромагнитные волны встречая на пути оказывают на них давление под действием электрической составляющей E вблизи поверхности возникает ток j, на который действует сила Лоренца со стороны магнитной составляющей H. Сила направлена так, чтобы создать давление на тело. Максвелл получил уравнение для среднего давления: p=(1+k)<w>cosφ, k – коэффициент отражения поверхности, w – средняя плотность энергии в волне, φ – угол падения и угол отражения от зеркальной поверхности. Фактическое существование давления электромагнитных волн приводит к выводу, что электромагнитному полю присуще определение – механический импульс. Пусть на площадку S с k=0 в течении времени t нормально падает волна. Полученный площадкой импульс можно выразить через плотность импульса или Sgct. Согласно второму закону Ньютона он равен Spt. Приравнивая эти выражения, получим плотность импульса. В изолированной системе полный импульс системы не изменяется. Если какое-нибудь, первоначально покоящееся тело испускает электромагнитные волны, то это тело получает импульс отдачи. Электромагнитному полю присуще также некоторая масса тела. cd=g => d=g/c=<w>/c2 – эта формула согласуется с формулой Эйнштейна W=mc2.
