
- •12) Свойства аминокислот
- •Амфотерные свойства и изоэлектрическая точка белков
- •23) 1. Состав нуклеиновых кислот
- •24) 1.1. Состав днк
- •1.2. Состав рнк
- •Участвующие в трансляции
- •26) Биосинтез белка
- •Активный центр ферментов
- •34) Классификация белков (по форме, по сложности строения, по растворимости, по функциям)
- •Виды нуклеиновых кислот – днк и рнк, их биологическая роль, локализация в клетке, хим. Состав. Понятие о нуклеотидах и нуклеозидах.
- •30) Роль витаминов в обмене веществ. Классификация витаминов. Гипо-, авитаминозы. Связь между витаминами и ферментами. Общая характеристика жирорастворимых витиминов
- •Витамины группы к
- •32) Ферментативных реакций кинетика
- •35) Окисление биологическое
- •Роль глюкозы в организме человека
- •Регуляция уровня глюкозы (сахара) в крови.
- •Гликолиз
- •47) Азотистый баланс
24) 1.1. Состав днк
Исследуя нуклеотидный состав нативных ДНК различного происхождения, Чаргафф обнаружил следующие закономерности.1. Все ДНК независимо от их происхождения содержат одинаковое число пуриновых и пиримидиновых оснований. Следовательно, в любой ДНК на каждый пуриновый нуклеотид приходится один пиримидиновый.2. Любая ДНК всегда содержит в равных количествах попарно аденин и тимин, гуанин и цитозин, что обычно обозначают как А=Т и G=C. Из этих закономерностей вытекает третья.3. Количество оснований, содержащих аминогруппы в положении 4 пиримидинового ядра и 6 пуринового (цитозин и аденин), равно количеству оснований, содержащих оксо-группу в тех же положениях (гуанин и тимин), т. е. A+C=G+T. Эти закономерности получили название правил Чаргаффа. Наряду с этим было установлено, что для каждого типа ДНК суммарное содержание гуанина и цитозина не равно суммарному содержанию аденина и тимина, т. е. что (G+C)/(A+T), как правило, отличается от единицы (может быть как больше, так и меньше ее). По этому признаку различают два основных типа ДНК: А Т-тип с преимущественным содержанием аденина и тимина и G C-тип с преимущественным содержанием гуанина и цитозина.Величину отношения содержания суммы гуанина и цитозина к сумме содержания аденинаи тимина, характеризующую нуклеотидный состав данного вида ДНК, принято называть коэффициентом специфичности. Каждая ДНК имеет характерный коэффициент специфичности, который может изменяться в пределах от 0,3 до 2,8. При подсчете коэффициента специфичности учитывается содержание минорных Оснований, а также замены основных оснований их производными. Например, при подсчете коэффициента специфичности для ЭДНК зародышей пшеницы, в которой содержится 6% 5-метилцитозина, Последний входит в сумму содержания гуанина (22,7%) и цитозина (16,8%). Смысл правил Чаргаффа для ДНК стал понятным после установления ее пространственной структуры.
. Молекула ДНК представляет собой спираль, образованную 2 полинуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси (рис. 3.1).
2
.
Первичная структура
цепей ДНК — это
порядок чередования
дезоксирибонуклеозидмонофосфатов
(dNMP) в полинуклеотидной цепи. Мононуклео-тиды
связываются между собой 3',5'-фосфодиэфир-ными
связями. Концы
полинуклеотидной цепи различаются
по структуре: на 5'-конце находится
фосфатная группа, на З'-конце цепи —
свободная ОН-группа.
3. Полинуклеотидные цепи в двухцепочечной молекуле ДНК расположены антипараллельно. Цепи удерживаются относительно друг друга за счет водородных связей между комплементарными азотистыми основаниями А-Т и G-C. Комплементарные основания лежат в одной плоскости, которая практически перпендикулярна главной оси спирали.Между основаниями двухцепочечной молекулы возникают гидрофобные взаимодействия, стабилизирующие двойную спираль.Цепи комплементарны, но не идентичны друг другу, нуклеотидный состав цепей различен.
4. Каждая молекула ДНК упакована в отдельную хромосому. Хромосомы содержат разнообразные белки, связанные с определенными последовательностями ДНК. Все связывающиеся с ДНК эука-риотов белки можно разделить на 2 группы: гистоны и негистоновые белки. Комплекс белков с ядерной ДНК клеток называют хроматином.
5. Питоны — это белки небольшого размера (мол. масса около 20 000) с очень высоким содержанием положительно заряженных аминокислот (лизина и аргинина). Хроматин содержит 5 типов гистонов: Н2А, Н2В, НЗ, Н4 (нуклеосомные гистоны) и HI. Суммарный положительный заряд позволяет им прочно связываться с ДНК (рис. 3.2). Фрагмент ДНК (146 пар нуклеотидов) взаимодействует с комплексом гистонов (нуклеосомный кор), образуя нуклеосомы. Гистоны HI связываются с ДНК в межнуклеосомных участках (линкерных последовательностях) и защищают эти участки от действия нуклеаз.
Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер (полианион), мономером которого является нуклеотид.Каждый нуклеотид состоит из остатка фосфорной кислоты, присоединённого по 5'-положению к сахару дезоксирибозе, к которому также через гликозидную связь (C—N) по 1'-положению присоединено одно из четырёх азотистых оснований. Именно наличие характерного сахара и составляет одно из главных различий между ДНК и РНК, зафиксированное в названиях этих нуклеиновых кислот (в состав РНК входит сахар рибоза)[7]. Пример нуклеотида — аденозинмонофосфат — где основание, присоединённое к фосфату и рибозе, это аденин, показан на рисунке.Исходя из структуры молекул, основания, входящие в состав нуклеотидов, разделяют на две группы: пурины (аденин [A] и гуанин [G]) образованы соединёнными пяти- и шестичленным гетероциклами; пиримидины (цитозин [C] и тимин [T]) — шестичленным гетероциклом[8].В виде исключения, например, у бактериофага PBS1, в ДНК встречается пятый тип оснований — урацил ([U]), пиримидиновое основание, отличающееся от тимина отсутствием метильной группы на кольце, обычно заменяющее тимин в РНК[9].Следует отметить, что тимин и урацил не так строго приурочены к ДНК и РНК соответственно, как это считалось ранее. Так, после синтеза некоторых молекул РНК значительное число урацилов в этих молекулах метилируется с помощью специальных ферментов, превращаясь в тимин. Это происходит в транспортных и рибосомальных РНК[10].
25)