Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биохимия.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
1.32 Mб
Скачать

24) 1.1. Состав днк

Исследуя нуклеотидный состав нативных ДНК различного происхождения, Чаргафф обнаружил следующие закономерности.1. Все ДНК независимо от их происхождения содержат одинаковое число пуриновых и пиримидиновых оснований. Следовательно, в любой ДНК на каждый пуриновый нуклеотид приходится один пиримидиновый.2. Любая ДНК всегда содержит в равных количествах попарно аденин и тимин, гуанин и цитозин, что обычно обозначают как А=Т и G=C. Из этих закономерностей вытекает третья.3. Количество оснований, содержащих аминогруппы в положении 4 пиримидинового ядра и 6 пуринового (цитозин и аденин), равно количеству оснований, содержащих оксо-группу в тех же положениях (гуанин и тимин), т. е. A+C=G+T. Эти закономерности получили название правил Чаргаффа. Наряду с этим было установлено, что для каждого типа ДНК суммарное содержание гуанина и цитозина не равно суммарному содержанию аденина и тимина, т. е. что (G+C)/(A+T), как правило, отличается от единицы (может быть как больше, так и меньше ее). По этому признаку различают два основных типа ДНК: А Т-тип с преимущественным содержанием аденина и тимина и G C-тип с преимущественным содержанием гуанина и цитозина.Величину отношения содержания суммы гуанина и цитозина к сумме содержания аденинаи тимина, характеризующую нуклеотидный состав данного вида ДНК, принято называть коэффициентом специфичности. Каждая ДНК имеет характерный коэффициент специфичности, который может изменяться в пределах от 0,3 до 2,8. При подсчете коэффициента специфичности учитывается содержание минорных Оснований, а также замены основных оснований их производными. Например, при подсчете коэффициента специфичности для ЭДНК зародышей пшеницы, в которой содержится 6% 5-метилцитозина, Последний входит в сумму содержания гуанина (22,7%) и цитозина (16,8%). Смысл правил Чаргаффа для ДНК стал понятным после установления ее пространственной структуры.

. Молекула ДНК представляет собой спираль, образованную 2 полинуклеотидными цепями, за­крученными относительно друг друга и вокруг об­щей оси (рис. 3.1).

2 . Первичная структура цепей ДНК — это порядок чередования дезоксирибонуклеозидмонофосфатов (dNMP) в полинуклеотидной цепи. Мононуклео-тиды связываются между собой 3',5'-фосфодиэфир-ными связями. Концы полинуклеотидной цепи раз­личаются по структуре: на 5'-конце находится фосфатная группа, на З'-конце цепи — свободная ОН-группа.

3. Полинуклеотидные цепи в двухцепочечной мо­лекуле ДНК расположены антипараллельно. Цепи удерживаются относительно друг друга за счет водо­родных связей между комплементарными азотистыми основаниями А-Т и G-C. Комплементарные основания лежат в одной плоскости, которая прак­тически перпендикулярна главной оси спирали.Между основаниями двухцепочечной молекулы возникают гидрофобные взаимодействия, стабили­зирующие двойную спираль.Цепи комплементарны, но не идентичны друг другу, нуклеотидный состав цепей различен.

4.     Каждая молекула ДНК упакована в отдельную хромосому. Хромосомы содержат разнообразные белки, связанные с определенными последователь­ностями ДНК. Все связывающиеся с ДНК эука-риотов белки можно разделить на 2 группы: гистоны и негистоновые белки. Комплекс белков с ядерной ДНК клеток называют хроматином.

5.     Питоны — это белки небольшого размера (мол. масса около 20 000) с очень высоким содержанием положительно заряженных аминокислот (лизина и аргинина). Хроматин содержит 5 типов гистонов: Н2А, Н2В, НЗ, Н4 (нуклеосомные гистоны) и HI. Суммарный положительный заряд позволяет им прочно связываться с ДНК (рис. 3.2). Фрагмент ДНК (146 пар нуклеотидов) взаимодействует с комплексом гистонов (нуклеосомный кор), образуя нуклеосомы. Гистоны HI связываются с ДНК в межнуклеосомных участках (линкерных последовательностях) и защи­щают эти участки от действия нуклеаз.

Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер (полианион), мономером которого является нуклеотид.Каждый нуклеотид состоит из остатка фосфорной кислоты, присоединённого по 5'-положению к сахару дезоксирибозе, к которому также через гликозидную связь (C—N) по 1'-положению присоединено одно из четырёх азотистых оснований. Именно наличие характерного сахара и составляет одно из главных различий между ДНК и РНК, зафиксированное в названиях этих нуклеиновых кислот (в состав РНК входит сахар рибоза)[7]. Пример нуклеотида — аденозинмонофосфат — где основание, присоединённое к фосфату и рибозе, это аденин, показан на рисунке.Исходя из структуры молекул, основания, входящие в состав нуклеотидов, разделяют на две группы: пурины (аденин [A] и гуанин [G]) образованы соединёнными пяти- и шестичленным гетероциклами; пиримидины (цитозин [C] и тимин [T]) — шестичленным гетероциклом[8].В виде исключения, например, у бактериофага PBS1, в ДНК встречается пятый тип оснований — урацил ([U]), пиримидиновое основание, отличающееся от тимина отсутствием метильной группы на кольце, обычно заменяющее тимин в РНК[9].Следует отметить, что тимин и урацил не так строго приурочены к ДНК и РНК соответственно, как это считалось ранее. Так, после синтеза некоторых молекул РНК значительное число урацилов в этих молекулах метилируется с помощью специальных ферментов, превращаясь в тимин. Это происходит в транспортных и рибосомальных РНК[10].

25)