Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
5. Оксидоредуктазы.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
315.9 Кб
Скачать

6. Оксидоредуктазы

6. Оксидоредуктазы

1. Определение

Оксидоредуктазы это ферменты катализирующие окислительно-восстановительные реакции. Известны три типа окисления:

1. Перенос водорода;

2. Присоединение кислорода;

3. Перенос электронов.

Все три типа окисления встречаются в живых элементах и катализируются соответствующими оксидоредуктазами. Наиболее часто встречаются реакции сопровождающиеся переносом водорода, которые катализируются ферментами дегидрогеназами.

2. Дегидрогеназы

Наиболее часто встречающиеся оксидоредуктазы — дегидрогеназы. Это ферменты, катализирующие перенос водорода. Общее уравнение реакции дегидрирования

Дегидрогеназы — это двухкомпонентные ферменты, состоящие из простетической группы и специфического белка.

Как было установлено, два удаляемых в ходе реакции атома водорода перемещаются на водородпереносящие коферменты, такие как NAD+, NADP+, FAD, FMN.

Дегидрогеназы бывают:

2.1 Анаэробные;

2.2 Аэробные.

2.1 Анаэробные дегидрогеназы не могут передать отнятый водород непосредственно кислороду воздуха, а передают его промежуточным ферментативным системам, например аэробным дегидрогеназам. Простетической группой анаэробных дегидрогеназ являются NAD+ и NADP+ (никотинамидадениндинуклеотид и никотинамидадениндинуклеотидфосфат)

Функциональной частью обоих коферментов анаэробных дегидрогеназ является никотинамид — амид никотиновой кислоты. Это витамин РР — никотиновая кислота в виде своего амида. В состав данных коферментов входят также азотистое основание аденин, два остатка сахара — рибозы и два (в NAD+) или три (в NADP+) остатка фосфорной кислоты (рис. 1).

Рис. 1. Строение молекулы NAD+ и NADР+

Эти коферменты могут находиться как в окисленной — NAD+ и NADP+, так и в восстановленной — NADH и NADPH формах.

Механизм действия

Механизм действия этих дегидрогеназ до конца не установлен. Использование меченых 2Н-спиртов и изучение их окисления под действием дегидрогеназ NAD показало, что дегидрогеназы катализируют прямой перенос к NAD+ водорода, который связан с углеродом спиртовой группы. Многие наблюдения позволяют рассматривать процесс биологического окисления, т. е. дегидрирование, как удаление гидрид-иона (Н) вместе с протоном (Н+), а не удаление двух атомов водорода. Водород, присоединенный к кислороду спирта, высвобождается в реакционную среду в виде протона (Н+).

Таким образом, NAD+ и NADP+ можно рассматривать как коферменты, акцептирующие гидрид-ион.

NAD+ и NADP+ представляют собой коферменты большого числа дегидрогеназ. Они принимают участие в переносе электронов в ходе окислительно-восстановительных реакций. Обычно символически реакцию окисления с участием дегидрогеназ обозначают  2Н. Это означает, что происходит перенос двух электронов и двух протонов (Н+) в виде гидрид-иона (Н) и протона (Н+), т. е. необходимо помнить, что при переносе двух атомов водорода речь идет о переносе двух протонов и двух электронов.

В присутствии восстановленного субстрата АН2 — донора электронов и соответствующей дегидрогеназы пиридиновое кольцо кофермента восстанавливается путем связывания в 4-м положении одного протона и двух электронов; второй протон отщепляется в реакционную среду. Поэтому NAD+ и NADP+ являются акцепторами электронов, хотя на самом деле переносится гидрид-ион водорода (Н). В обратной реакции NADH + H+ и NADPH + H+ выступают в роли донора электронов (рис. 2): действуют в качестве кофермента в реакции ферментативного дегидрирования (на рисунке изображена никотинамидная часть молекулы NAD+ или NADP+, остальная ее часть обозначена буквой R).

Рис. 2. Прямая и обратная реакция переноса протонов водорода (электронов) в NAD+ или NADP+

Во многих оксидоредуктазах коферменты анаэробных дегидрогеназ — нуклеотиды NAD+ и NADP+ не входят в состав белка-кофермента в качестве простетических групп. Значительная часть их свободна, они растворены в водной части цитоплазмы клетки, выполняя различные функции.

Участие пиридинуклеотидов в качестве окислителей или восстановителей в реакциях, катализируемых оксидоредуктазами, показано на рис. 3. Функциональной частью этих соединений является никотинамидное кольцо. Окисленные формы NAD+ и NADP+ несут положительный заряд, который обычно изображают локализованным на атоме азота никотинамидного кольца. Однако в результате резонанса внутри кольцевой системы пиридина можно предположить существование трех структур, различающихся локализацией положительного заряда. Одна из структур несет положительный заряд при атоме углерода С—4 (хотя может и при С—2 и С—1). Анаэробные дегидрогеназы катализирует перенос атома водорода вместе со связанными с ним электронами в виде гидрид-иона (Н) от молекулы субстрата (АН2) к положительно заряженному атому С—4 NAD+, образуя в результате восстановленную форму кофермента NADH + H+. Электронная пара гидрид-иона водорода (Н) становится связующей парой вновь образовавшейся ковалентной связи между атомом углерода С—4 и атомом водорода Н. Субстрат, теряющий гидрид-ион от одного из своих атомов, становится положительно заряженным ионом, который стабилизируется, отдавая протон в окружающую водную среду. В обратной реакции оксидоредуктаза катализирует перенос гидрид-иона от С—4 NADPH на протонируемый субстрат.

Таким образом, NADP+ и NADРН различаются наличием или отсутствием одного гидрид-иона, который эквивалентен двум электронам и одному протону (Н+). Именно поэтому анаэробные дегидрогеназы относят к переносчикам водорода и двухэлектронным окислительно-восстановительным ферментам.

Рис. 3. Участие пиридиннуклеотидов в реакциях переноса протонов водорода (электронов) в качестве коферментов дегидрогеназ

2.2 Аэробные дегидрогеназы 

Аэробные дегидрогеназы могут передавать отнятый водород непосредственно кислороду воздуха. Коферментами этих дегидрогеназ являются FMN и FAD (флавинмононуклеотид и флавинадениндинуклеотид).

Аэробные дегидрогеназы или флавиновые ферменты принимают участие в терминальной цепи переноса электронов в организме животных и растениях.

Простетической группой этих ферментов являются флавинмононуклеотид (FMN) и флавинадениндинуклеотид (FAD). В состав FMN входит азотистое основание диметилизоаллоксазин, вместо сахара рибозы — спирт рибит и фосфорная кислота. В состав FAD входит FMN, соединенный с другим нуклеотидом, содержащим азотистое основание — аденин, сахар—рибозу и фосфорную кислоту. Простетическая группа флавопротеинов содержит рибофлавин — это диметилизоалаксазин соединенный со спиртом рибитом (витамин В2)(рис. 4).

Рис. 4. Строение молекулы FMN и FAD

Коферментом флавопротеинов в большинстве случаев служит FAD, реже — FMN. Эти коферменты функционируют в качестве прочно связанных с белками—ферментами простетических групп. Это их отличает от NAD+ и NADP+, которые могут существовать в клетке в свободном виде, диффундируя от одного белка-фермента к другому. В катализируемых флавопротеинами реакциях изоаллоксазиновое кольцо служит промежуточным переносчиком водорода, отщепляемого в ходе окислительно-восстановительной реакции.

Термин «флавинадениндинуклеотид» (FAD) не совсем правомерен, так как D-рибитальная группа не образует с рибофлавином гликозидной связи и, следовательно, данная молекула не является динуклеотидом. Флавинмононуклеотид (FMN) также не является нуклеотидом, но оба эти термина прочно вошли в биохимическую терминологию.

Реакции гидрирования и дегидрирования с участием флавиновых дегидрогеназ, исходя из концепции переноса гидрид-иона Н, можно представить в следующем виде (рис. 5).

Рис. 5. Прямая и обратная реакции переноса протонов водорода

(электронов) в FAD

В этой реакции гидрид-ион Н присоединяется в 5-е положение, а протон Н+ — в первое.

В структуры некоторых флавиновых ферментов встроены ионы металлов. Это металлофлавиновые ферменты. Окисленные формы флавиновых ферментов связывают ионы металлов трудно, но все же они образуют окрашенные в красный цвет комплексы с Ag+ и Cu+.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]