
- •Основы работы и расчета на устойчивость центрально сжатых стержней.
- •Потеряют устойчивость в упругопластической стадии работы материала с касательным модулем деформации. Формула ф.С.Ясинского.
- •Двойственная природа коэффициента устойчивости для проверки устойчивости центрально сжатых стержней
- •Основы работы и расчета на прочность стержней, испытывающих сжатие или растяжение с изгибом.
- •Основы работы и расчета на устойчивость внецентренно сжатых и сжато-изогнутых стержней.
- •6. Формула проверки устойчивости внецентренно сжатых стержней. Коэффициент влияния формы сечения, относительный эксцентриситет,приведенный эксцентриситет, условная гибкости.
- •7.Энергетическое условие критического состояния сжато-изогнутого стержня.
- •8.Работа элементов конструкций на кручение. Дополнительные нормальные напряжения от стеснения депланации сечения при стесненном кручении стержней открытого профиля.
- •9.Общая устойчивость плоской формы изгиба стержней.
- •Расчет элементов стальных конструкций на прочность с учетом хрупкого разрушения (проверка на хладостойкость).
- •11. Балки и балочные конструкции.Компоновка балочных конструкций. Настилы балочных клеток.
- •12. Прокатные балки.Подбор сечения и поверка несущей способности прокатных балок.
- •13.Проверка жесткости балок. Учет пластической работы материала в неразрезных и защемленных балках.
- •14.Составные балки. Компоновка и подбор сечения. Высота балок.
- •15.Составные балки. Компоновка и подбор сечения. Толщина стенки балки. Изменение сечения балки по длине.
- •16. Проверка прочности и прогиба балок. Обеспечение общей устойчивости балок.
- •17. Условие обеспечения устойчивости сжатого пояса для упругоработающих и бистальных балок.
- •18. Устойчивость стенки балки. Потеря устойчивости стенки от действия касательных напряжений.
- •19. Устойчивость стенки упруго работающих балок симметричного двутаврового сечения от действия нормальных напряжений.
- •20. Устойчивость стенки балки от совместного действия нормальных и касательных напряжений.
- •21.Опирания и сопряжения балок. Опирание балок на стены и железобетонные подкладки.
- •22. Колонны и стержни, работающие на центральное сжатие. Типы сечений центрально сжатых колонн. Сплошные колонны.
- •23.Сквозные колонны. Типы сквозных колонн.
- •24. Влияние решеток на устойчивость стержня сквозной колонны. Колонны с безраскосной решеткой.
- •25. Колонны с треугольной решеткой и дополнительными распорками. Поперечная сила при продольном изгибе.
- •26. Схемы сопряжения балок с колоннами. Выбор расчетной схемы.
- •27. Подбор сечения и конструктивное оформление стержня колонны. Сплошностенчатые колонны.
- •Подбор сечения и конструктивное оформление стержня колонны. Сквозные колонны.
- •Т ипы и конструктивные особенности баз колонн. Расчет и конструктивное оформление баз с траверсой и баз с консольными ребрами.
- •Типы и конструктивные особенности баз колонн. Расчет и конструктивное оформление базы с фрезерованным торцом стержня колонны.
- •Оголовки колонн и сопряжение балок с колоннами и расчет элементов сопряжений.
- •Фермы. Компоновка конструкций ферм. Очертание поясов и система решетки ферм.
- •Определение генеральных размеров ферм. Определение пролета ферм. Определение высоты треугольных ферм. Определение высоты ферм из условий жесткости.
- •Системы решеток ферм и их характеристики. Обеспечение устойчивости ферм.
- •Типы сечений стержней ферм. Расчет ферм.
- •Расчет ферм. Определение расчетной длины стержней.
- •Расчет ферм. Подбор сечения растянутых элементов.
- •Расчет ферм. Подбор сечения элементов ферм, работающих на действие продольной силы и изгиб (внецентренное растяжение и сжатие). Подбор сечений стержней по предельной гибкости.
- •Конструкции легких ферм. Узлы ферм из парных уголков. Укрупнительный стык стропильной фермы из парных уголков. Опорные узлы фермы из парных уголков.
- •Фермы с поясами из широкополочных тавров с параллельными гранями. Фермы из труб.
- •Фермы из гнутых профилей. Узлы ферм из открытых гнутых профилей.
21.Опирания и сопряжения балок. Опирание балок на стены и железобетонные подкладки.
В месте передачи касательных напряжений со стенки балки на опорное ребро закон распределения напряжений Журавского по высоте нарушается, они концентрируются в нижней части стенки, причем степень концентрации зависит от соотношения толщин стенки и площади поперечного сечения ребра. При относительно мощных ребрах и допущении местных пластических деформаций передачу касательных напряжений на опорное ребро можно принять равномерным по всей высоте стенки. Ребро жесткости для передачи опорной реакции надежно прикрепляют к стенке сварными швами, а торец ребер жесткости либо плотно пригоняют к нижнему поясу балки, либо строгают для непосредственной передачи опорного давления на стальную колонну. Для правильной передачи давления на колонну центр опорной поверхности ребра надо совмещать с осью полки колонны.
Размеры опорных ребер жесткости определяют обычно из расчета на смятие торца ребра:
гдеF— опорная реакция балки; Ар— площадь смятия опорного ребра, в сварных балках принимается равной всей пристроганной части площади ребра; Rp— расчетное сопротивление стали смятию торцевой поверхности.
Ширина
выступающей части ребра из условий его
местной устойчивости не должна превышать
Выступающая вниз часть опорного ребра не должна превышать а<1,5tопи обычно принимается равной 15 — 20 мм.
Помимо
проверки на смятие торца опорного ребра
производится также проверка опорного
участка балки на устойчивость из
плоскости балки как условного опорного
стержня, включающего в площадь своего
сечения опорные ребра и часть стенки
балки шириной по
в
каждую сторону и длиной, равной высоте
стенки балки:
гдеj—
коэффициент продольного изгиба стойки
с гибкостью
Опирание балок на стены и железобетонные подкладки
При опирании балок на каменные стены и железобетонные подкладки обычно применяют специальные стальные опорные части, которые служат для равномерного распределения давления балки на большую площадь менее прочного, чем сталь, материала опоры (камень, железобетон). Кроме того, опорные части должны обеспечить свободу деформации концов балки — поворот при прогибе балки, продольное смещение от температурных и силовых деформаций; в противном случае в опоре возникнут нежелательные дополнительные напряжения.В соответствии с требованиями применяют неподвижные и подвижные опорные части следующих типов: при пролетах до 20 м — плоские опорные плиты; до 40 м — тангенциальные опорные плиты;более 40 м — катковые опорные части.Опорные части изготовляют из литой или толстолистовой стали.
Определение размеров плиты:
Расчетный изгибающий момент в среднем сечении плиты
Момент сопротивления этого сечения плиты
Отсюда
легко определить толщину плиты
,где
F—
расчетное
давление балки на опору.
Радиус
поверхности тангенциальной опорной
плиты определяют из условия местного
смятия при свободном касании плоскости
и цилиндрической поверхности по условной
формуле «диаметрального сжатия»,
полученной путем преобразования формулы
Герца
(1)
гдеl
—
длина соприкосновения цилиндрической
поверхности катка или тангенциальной
опорной плиты с верхней плитой,
-
расчетное
сопротивление «диаметральному сжатию
катков» при свободном касании; оно
получено из сопоставления формулы (1) с
формулой Герца, причем для формулы Герца
принято расчетноесопротивление местному
смятию при свободном касании
Сопряжения главных и второстепенных балок между собой бывают этажные, в одном уровне верхних поясов и с пониженным расположением верхних поясов второстепенных балок.
Сопряжения главных и второстепенных балок между собой бывают этажные, в одном уровне верхних поясов и с пониженным расположением верхних поясов второстепенных балок.