
- •Системы искусственного интеллекта. Лекция 1. Искусственный интеллект.
- •Лекция 2. Краткий исторический обзор развития работ в области ии.
- •Системы с интеллектуальным интерфейсом
- •Экспертные системы
- •Самообучающиеся системы
- •Адаптивные информационные системы
- •Лекция 3. Задачи и области применения систем ии Области применения систем искусственного интеллекта (практический аспект)
- •Задачи интеллектуальных информационных систем (теоретический аспект)
- •Лекция 4. Экспертные системы: Определения и классификация
- •Лекция 5. Деревья решений. Общие принципы работы
- •Терминология
- •Что такое дерево решений и типы решаемых задач
- •Как построить дерево решений?
- •Этапы построения деревьев решений
- •Теоретико-информационный критерий
- •Статистический критерий
- •Правила
- •Преимущества использования деревьев решений
- •Области применения деревьев решений
- •Лекция 6. Нечеткая логика
- •Лекция 7. Нейронные сети
- •Лекция 8. Нейронные сети. Типы нс. Обучение нс. Применение нс.
- •30 Дней
- •Лекция 9. Генетические алгоритмы
- •Лекция 10. Основные понятия теории агентов
- •Лекция 11 иммунные сети Введение в иммунные системы
- •Вычислительные аспекты иммунной системы
- •Иммунная система с точки зрения организации обработки данных
- •Модели, основанные на принципах функционирования иммунной системы
- •Модель иммунной сети
- •Алгоритм отрицательного отбора
- •Другие модели
Задачи интеллектуальных информационных систем (теоретический аспект)
Представление знаний
Манипулирование знаниями
Общение
Восприятие
Обучение
Такой подход можно также интерпретировать как определенный набор способностей некой целостной, интегральной, интеллектуальной системы (ИС).
Понятно, что указанный набор способностей ИС следует рассматривать лишь как гипотетический. В различных практических областях применения систем ИИ может потребоваться только часть из этого перечня. Примером необходимости наличия, у искусственной ИС большинства из перечисленных способностей являются интегральные роботы, предназначенные для выполнения широкого (полностью не определенного) круга задач в естественной внешней среде. Причем в качестве ИС может рассматриваться не один робот, а коллектив подобных роботов. Такие работы сейчас весьма интенсивно ведутся (роботы-исследователи, микро-роботы и др.).
Остановимся кратко на каждом из перечисленных понятий.
1. Представление знаний. В рамках этого направления решаются задачи, связанные с формализацией и представлением знаний в памяти интеллектуальной системы (ИС). Для этого разрабатываются специальные модели представления знаний и языки для описания знаний, выделяются различные типы знаний. Изучаются источники, из которых ИС могут черпать знания, создаются процедуры и приемы, с помощью которых возможно приобретение знаний для ИС. Проблема представления знаний для ИС чрезвычайно актуальна, т.к. ИС - это система, функционирование которой опирается на знания о проблемной области.
2. Манипулирование знаниями. Для того чтобы знаниями можно было пользоваться при решении задач, надо научить ИС оперировать ими. В рамках данного направления строятся способы пополнения знаний на основе их неполных описаний, изучаются системы классификации хранящихся в ИС знаний, разрабатываются процедуры обобщения знаний и формирования на их основе абстрактных понятий, создаются методы достоверного и правдоподобного вывода на основе имеющихся знаний, предлагаются модели рассуждений, опирающихся на знания и имитирующих способности человеческих рассуждений. Манипулирование знаниями тесно связано с представлением знаний. Многие исследователи считают, что эти направления можно разделить только условно. Создающаяся в настоящее время теория баз знаний включает оба этих направления.
3. Общение. В круг задач этого направления входят: проблема понимания связных текстов на ограниченном и неограниченном ЕЯ, синтез связных текстов, понимание речи и синтез речи, теория моделей коммуникации между человеком и ИС. К этому же кругу проблем примыкают задачи формирования объяснений действий ИС, которые она должна уметь порождать по просьбе человека; комплекс задач, связанных с интеграцией в единый внутренний образ сообщений различной модальности (текстовых, речевых, зрительных и т.п.), полученных в процессе коммуникации. На основе исследований в этом направлении формируются методы построения лингвистических процессоров, вопросно-ответных систем, диалоговых систем и других ИС, целью которых является обеспечение комфортных условий для общения человека с ИС.
4. Восприятие. Об этом направлении уже упоминалось в контексте прикладных областей. Как видите, в ИИ тесно переплетены и теоретические прикладные направления.
5. Обучение. Предполагается, что ИС подобно человеку будут способны к обучению - решению задач, с которыми они ранее не встречались. Для того, чтобы это стало возможным, необходимо: создать методы формирования условий задачи по описанию проблемной ситуации или по наблюдению за этой ситуацией, научиться переходу от известного решения частных задач (примеров) к решению общей задачи, создать приемы декомпозиции исходной для ИС задачи на более мелкие так, чтобы они оказались для ИС уже известными, разработать нормативные и декларативные модели самого процесса обучения, создать теорию подражательного поведения. И перечень таких задач можно еще продолжать.
6. Поведение. ИС должны действовать в некоторой окружающей среде. Поэтому возникает задача разработки специальных поведенческих процедур, которые позволили бы ИС адекватно взаимодействовать с окружающей средой, другими ИС (коллективы роботов) и людьми. Для достижения такого взаимодействия необходимо провести исследование в ряде направлений и создать: модели целесообразного поведения, нормативного поведения, ситуационного поведения, специальные методы многоуровневого планирования и коррекции планов в динамических ситуациях. Лишь после этого можно будет говорить о возможности привычного взаимодействия между людьми и ИС.