
- •Вопрос №3
- •Вопрос №4
- •Вопрос №5
- •Вопрос №7
- •Вопрос №8
- •Вопрос №9
- •Вопрос №10
- •Вопрос №11
- •Вопрос №12
- •Вопрос №13
- •Вопрос №14
- •Вопрос №15
- •Вопрос №16
- •Вопрос №17
- •Вопрос №18
- •Вопрос №19
- •Вопрос №20
- •Вопрос №21
- •Вопрос №22
- •Вопрос №23
- •Вопрос №24
- •Вопрос №25
- •Вопрос №26
- •Вопрос №27
- •Вопрос №28
- •Вопрос №29
- •Вопрос №30
- •Вопрос №31
- •Вопрос №32
- •Вопрос №33
- •Вопрос №34
- •Вопрос №35
- •Вопрос №36
- •Вопрос №37
- •Вопрос №38
- •Вопрос №39
- •Вопрос №40
- •Вопрос №41. Твердость анизотропных горных пород.
- •Вопрос №42 . Изнашивание бурового инструмента. Мера изнашивания.
- •Вопрос №43. Особенности изнашивания бурового инструмента при вращательном бурении.
- •Вопрос №44. Влияние внешней среды на изнашивание бурового инструмента.
- •Вопрос №45. Влияние смазывающей способности среды на изнашивание бурового инструмента.
- •Вопрос №46. Влияние охлаждающей способности среды на изнашивание бурового инструмента.
- •Вопрос №47. Механизм разупрочнения и изнашивания металла и твердого сплава.
- •Вопрос №48. Назовите основные механические способы разрушения горных пород при бурении. Горных пород
- •I. Вращательное бурение
- •1. Вращательное бурение резцовыми твердосплавными коронками
- •2. Вращательное бурение буровым инструментом с резцами из компо-зиционных алмазосодержащих материалов и поликристаллических алмазов.
- •В ращательное бурение алмазными однослойными коронками.
- •4. Вращательное бурение алмазными импрегнированными коронками.
- •5. Вращательное бурение дробовыми коронками (дробью .
- •5. Вращательное бурение шарошечными долотами.
- •3. Гидромеханический способ бурения.
- •4.Термомеханический способ бурения.
- •IV. Вибрационное бурение.
- •VI. Шароструйное бурение.
- •Вопрос №49. Сформулируйте основную зависимость механической скорости бурения от площади забоя скважины, энергоемкости и затрат мощности для разрушения породы.
- •Вопрос №51. Каким образом влияет площадь забоя скважины на эффективность разрушения горной породы при бурении?
- •Вопрос №52. Каково влияние удельного контактного давления на процесс разрушения горной породы при бурении?
- •Вопрос №56. Влияние подачи промывочной жидкости на механическую скорость бурения и затраты мощности на бурение.
- •Вопрос №57. Причины и основные закономерности формирования зоны предразрушения при механических способах разрушения горных пород.
- •Вопрос №58. Каков механизм формирования винтообразных стволов скважины и керна?
- •Вопрос №59. Причины возникновения колебаний бурового инструмента и их виды. Каковы режимы работы бурового инструмента и их влияние на процесс разрушения породы?
- •Вопрос №60. Какова зависимость стоимости бурения от механической скорости бурения и ресурса бурового инструмента?
- •Вопрос №61. Область применения и назначение инструмента с резцами из твердого сплава.
- •Вопрос №62. Основы механизма разрушения горной породы инструментом с резцами из твердого сплава.
- •Вопрос №63. От каких параметров зависит глубина внедрения в породу резца из твердого сплава?
- •В опрос №64.Влияние параметров режима бурения и геометрии резцов на механическую скорость бурения.
- •Вопрос №65. Изнашивание резцов из твердого сплава и рациональные параметры режимы бурения инструментом с резцами из твердого сплава.
- •Вопрос №72. Направления интенсификации процесса разрушения горной породы при алмазном бурении.
Вопрос №18
Прочность – совокупность свойств твердых тел, определяющая их способность сопротивляться разрушению (разделению на части), а также необратимого изменения формы под действием внешних нагрузок.
Контактное давление – отношение осевой нагрузки Р к площади опорной или контактной поверхности (Sк), внедряемого в породу инструмента.
В результате контактного давления в горной породе возникают контактные напряжения. Распределение контактных напряжений на площадке контакта и в её окрестностях неравномерно и зависимо от формы торца внедряемого индентора, а максимальные значения контактных напряжений возникают на некотором удалении от площадки контакта, например, на некоторой глубине под центральной частью торца резца.
Концентрация напряжений - увеличение напряжений в малых областях, примыкающих к местам с резким изменением формы поверхности тела, его сечения. Факторами, обуславливающими концентрацию напряжений (концентраторы напряжений), могут быть надрезы, трещины и др. Концентраторы напряжений могут быть причиной разрушения тел, так как они снижают сопротивление тел разрушающим нагрузкам.
Энергоемкость разрушения оценивается количеством затраченной энергии на процесс разрушения горной породы. При разрушении горной породы энергия расходуется:
- на упругие и пластические деформации в породе;
- на преодоление сил трения;
- на преодоление сил связи в породе и сил внутреннего трения;
- деформацию и нагрев самого инструмента.
Вопрос №19
Механическое разрушение горных пород, работу по разрушению породы единичным резцом обычно моделируют внедрением специальных штампов – инденторов .
Индентор (англ. indentor, от лат in – в, внутрь и dens (dentis)– зуб, dent – выемка) – твердое тело (алмаз, закаленная сталь) определенной геометрической формы (шар, пирамида, конус), вдавливаемое в поверхность образца при определении твердости материала.
Применяемые инденторы могут иметь различную форму торца. Это, прежде всего, плоская цилиндрическая, коническая, плоская коническая, сферическая, клиновидная формы.
Оптимальной для разрушения горной породы формой индентора, очевидно, будет такая, при которой сопротивление породы внедрению будет минимально, а индентор будет сохранять свою работоспособность, то есть не разрушаться под действием соответствующих условиям разрушения нагрузок.
М
еханизм
разру-шения. В первый период вдавливания
под инден-тором образуется полу-сферический
объем породы (рис.2.15), в пределах которого
действуют макси-мальные касательные
напряжения. В пределах этой сферы порода
макси-мально уплотняется и формируется
ядро уплот-нения 3, ограниченное плоскостью
контакта инден-тора и полусферой
макси-мальных касательных напряжений,
диаметр которой равен диаметру
индентора. В этот период происходит
образование конической кольцевой выемки
1 вследствие скалывания породы по контуру
штампа за счет растягивающих напряжений
или пластической деформации сдвига
кольцевого микрообъема за счет действия
касательных напряжений (для пластичных
пород).
При дальнейшем увеличении нагрузки максимальные касательные напряжения достигают предельного значения и в точке А полусферы создается критическое напряженное состояние, превышающее предел прочности породы.