
- •Основные подходы к заданию целей обучения физике в школе
- •Физические теории в школьном курсе физике
- •Формирование физических понятий
- •Самостоятельная работа учащихся при изучении физики
- •Планирование работы учителя физики
- •Проверка достижения учащимися целей обучения физике
- •Система школьного физического эксперимента
- •2. Демонстрационный физический эксперимент и основные требования к нему
- •Информационные технологии при обучении физике
- •Методика изучения кинематических понятий (способы задания положения точки, перемещение и путь)
- •Методика изучения кинематических понятий (скорость, ускорение, уравнения движения)
- •Далее вводится понятие о «действии» и «противодействии» в механике при изучении 3 закона Ньютона. Дается следующая формулировка:
- •Содержание и структура темы «Молекулярная физика». Формирование понятия «идеальный газ» и методика изучения основного уравнения молекулярно-кинетической теории идеального газа
- •2M0vxz, где z – число столкновений.
- •Методика формирования термодинамических понятий и первого начала термодинамики
- •Содержание раздела «Электродинамика». Этапы формирования понятия «электромагнитное поле»
- •Методика изучения проводимости различных сред
- •Вихревое электрическое поле. Явление электромагнитной индукции
- •Методика изучения электромагнитных колебаний в школьном курсе физике
- •Методика изучения волновых свойств света (интерференция и дифракция)
- •Значение раздела «Квантовая физика» и особенности его изучения. Изучение внешнего фотоэффекта
- •Методика изучения строения атома. Методика изучения энергии связи ядра и ядерных сил
- •Избранные вопросы теории и методики обучения физике
- •607220, Г.Арзамас, Нижегородской области, ул.К.Маркса, 36
- •607220, Г.Арзамас, Нижегородской области, ул.К.Маркса, 36
2M0vxz, где z – число столкновений.
На основе качественных рассуждений, учащимся необходимо показать, что число столкновений z пропорционально концентрации молекул, их скорости, а также площади поверхности стенки.
Исходя из того, что движение молекул хаотично, поэтому все направления равновероятны и в каждый момент времени в среднем в противоположных направлениях движется одинаковое количество частиц, значит нужно учесть, что в каждый момент времени примерно половина молекул движется в сторону стенки, и половина в противоположную, то есть число ударов молекул о стенку за единицу времени равно
.
Тогда полный импульс, переданный стенке за 1 с, равен:
2m0vxz = m0v2xnS.
А значит сила, действующая на стенку со стороны молекул равна
F= m0v2xnS.
Учитывая, что
,
и
Окончательно выводится основное уравнение молекулярно-кинетической теории идеального газа
.
Если учесть понятие средней кинетической энергии молекул газа, то уравнение можно записать в виде
При анализе уравнения необходимо обратить внимание учащихся на то, что оно связывает макроскопический параметр состояния газа - давление с характеристиками отдельных молекул. Это уравнение имеет смысл только для совокупности молекул и носит статистический характер. При этом согласно закона Паскаля, давление газа на внесенную в него пластину одинаково с обеих сторон.
Основное уравнение молекулярно-кинетической теории идеального газа следует проиллюстрировать числовыми примерами.
Методика формирования термодинамических понятий и первого начала термодинамики
В термодинамике основным понятием является понятие «внутренняя энергия». Внутренняя энергия системы – это суммарная энергия всех составных частей системы и их взаимодействий. Это кинетическая энергия хаотического теплового движения частиц системы, потенциальная энергия их взаимодействия, обусловленная структурой системы, энергия электронов на атомных и молекулярных орбиталях, энергия связи в атомных ядрах, энергия элементарных частиц. Она не включает кинетической и потенциальной энергии системы как целого. Внутренняя энергия является однозначной функцией состояния тела, которое определяется рядом параметров (давление, объем, температура). Это означает, что в каждом состоянии тело (или система) обладает лишь одним значением внутренней энергии. Следовательно, изменение внутренней энергии системы при переходе из одного состояния в другое не зависит от этого перехода, т.e. внутренняя энергия является функцией состояния системы, а не функцией процесса.
Если рассматривать идеальный газ, то его внутренняя энергия представляет собой только суммарную кинетическую энергию теплового движения его молекул. Именно такое понимание и должно быть сформировано у учащихся. В этом случае все-таки методически верно показать учащимся, откуда берется формула для расчета внутренней энергии. Термодинамическая трактовка понятия внутренней энергии не полностью раскрывает его смысл. Для более полного определения этого понятия необходимо рассмотреть его молекулярно-кинетическую трактовку.
Это можно сделать на основе следующих рассуждений.
Внутренняя энергия равна суммарной кинетической энергии молекул идеального газа
.
Где
–
число
молекул в газе, а
– средняя кинетическая энергия одной
молекулы одноатомного газа. Тогда
. Учитывая, что
окончательно
Последующий анализ этого уравнения позволяет сделать вывод о том, что внутренняя энергия идеального газа прямо пропорциональна абсолютной температуре и зависит только от температуры.
Переход к изучению понятий «работа» и «количество теплоты» связан с актуализацией знаний из курса физики основной школы о способах изменения внутренней энергии. В 8 классе был фактически на качественном уровне сформулирован первый закон термодинамики: внутреннюю энергию можно изменить либо теплопередачей, либо совершением работы.
Вначале необходимо записать формулу изменения внутренней энергии
Внутренняя энергия может изменяться под действием каких-либо внешних факторов: либо при совершении работы, либо в процессе теплопередачи. В первом случае мерой изменения внутренней энергии является работа, во втором - количество переданной теплоты. Работа, так же как и количество теплоты, зависит не только от конечного и начального состояний системы, но и от того, при каком процессе происходило изменение состояния. Количество теплоты и работа характеризуют процесс изменения состояния и не являются функциями состояния.
Следует разъяснить школьникам, что работа и теплопередача - неравноценные способы изменения энергии. Работа - изменение энергии упорядоченного движения, совершение работы может привести к изменению как механической, так и внутренней энергии. При теплопередаче изменяется энергия хаотического движения частиц системы, а это ведет лишь к изменению ее внутренней энергии.
Используя первый закон термодинамики, показывают, как изменяется внутренняя энергия идеального газа при различных изопроцессах, и объясняют характер этого изменения с молекулярной кинетической точки зрения.
Понятие количества теплоты и калориметрические расчеты достаточно полно изучают в базовом курсе физике, поэтому в старших классах этот материал лишь повторяют.
Изучение первого закона термодинамики продолжает формирование представления старшеклассников о фундаментальном естественнонаучном принципе - принципе сохранения энергии
Прежде чем приступить к изучению первого закона термодинамики, целесообразно повторить закон сохранения энергии в механических процессах, при этом особое внимание уделяют обсуждению вопроса о том, что механическая энергия сохраняется в замкнутых консервативных системах. Если система не является консервативной, то ее механическая энергия не сохраняется, она частично или полностью превращается во внутреннюю энергию, но при этом сохраняется полная энергия системы.
Далее рассматривают, какими способами можно изменить внутреннюю энергию системы. Этот материал изучали в базовом курсе физики, поэтому здесь его повторяют и обобщают. В результате школьников подводят к выводу: внутреннюю энергию можно изменить либо в процессе теплопередачи, либо при совершении работы, либо при совершении работы и при теплопередаче одновременно.
Обсуждают вопрос о мерах изменения внутренней энергии при том или ином процессе. Учащиеся делают вывод: мерой изменения внутренней энергии в процессе совершения работы является работа, а мерой изменения внутренней энергии в процессе теплопередачи - количество теплоты. Здесь же целесообразно повторить вопрос о знаках этих величин. Условились считать количество теплоты положительным (Q > 0), если количество теплоты сообщается системе, и отрицательным (Q < 0), если количество теплоты отдано системой.
Работу А, совершаемую внешними силами над системой, считают положительной (А > 0), если газ сжимается; работа внешних сил отрицательна, если газ расширяется (А < 0).
рассмотрев ряд примеров, делают вывод: изменение внутренней энергии системы равно сумме количества теплоты, переданного системе, и работе внешних сил над системой:
ΔU=Q+ A
где ΔU - изменение внутренней энергии, равное разности значений внутренней энергии в конечном и в начальном состояниях.
эту формулу можно записать иначе:
Q - ΔU + А', (А' =А).
Количество теплоты, сообщенное системе, идет на увеличение её внутренней энергии и на совершение системой работы над внешними телами.
Анализируя формулу первого закона термодинамики, целесообразно еще раз подчеркнуть, что внутренняя энергия характеризует состояние системы независимо от способа изменения этого состояния, так как внутренняя энергия системы однозначно определяется параметрами: объемом V и температурой Т. Работа и количество теплоты характеризуют процесс изменения состояния. При одинаковом изменении состояния эти величины различны (в зависимости от способа перехода системы из одного состояния в другое), хотя сумма их будет одна и та же.