Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Всё-всё-всё (1).doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
954.37 Кб
Скачать
  1. Абсолютные показатели вариации. Их значение в статистическом анализе.

Исследование вариации в статистике имеет важное значение, т.к. дает возможность оценить степень воздействия на данный признак других варьирующих признаков. Определение вариации необходимо при организации выборочного наблюдения, построения статистических моделей, разработке материалов экспертных опросов и т.д.

Вариация - это различие значений величин X у отдельных единиц статистической совокупности. Для изучения силы вариации рассчитывают следующие показатели вариации: размах вариации, среднее линейное отклонение,линейный коэффициент вариации, дисперсия, среднее квадратическое отклонение, квадратический коэффициент вариации. К абсолютным показат вар относят: размах вариции, ср. лин. Отклонение дисперсия, среднее квадр отклонение.

Размах вариации – это разность между максимальным и минимальным значениями X из имеющихся в изучаемой статистической совокупности:

Недостатком показателя H является то, что он показывает только максимальное различие значений X и не может измерять силу вариации во всей совокупности.

Cреднее линейное отклонение - это средний модуль отклонений значений X от среднего арифметического значения. Его можно рассчитывать по формуле средней арифметической простой - получим среднее линейное отклонение простое:

Если исходные данные X сгруппированы (имеются частоты f), то расчет среднего линейного отклонения выполняется по формуле средней арифметической взвешенной - получим среднее линейное отклонение взвешенное:

Дисперсия - это средний квадрат отклонений значений X от среднего арифместического значения. Дисперсию можно рассчитывать по формуле средней арифметической простой - получим дисперсию простую:

Если исходные данные X сгруппированы (имеются частоты f), то расчет дисперсии выполняется по формуле средней арифметической взвешенной - получим дисперисю взвешенную:

Если преобразовать формулу дисперсии (раскрыть скобки в числителе, почленно разделить на знаменатель и привести подобные), то можно получить еще одну формулу для ее расчета как разность средней квадратов и квадрата средней:

Если значения X - это доли совокупности, то для расчета дисперсии используют частную формулу дисперсии доли:

.

Cреднее квадратическое отклонение применяется для оценки вариации путем расчета среднего квадратического отклонения, обозначаемое малой греческой буквой сигма:

Еще проще можно найти среднее квадратическое отклонение, если предварительно рассчитана дисперсия, как корень квадратный из нее

  1. Относительные показатели вариации. Их значение в статистическом анализе.

К относительным показателям вариации относят: коэфф. осцилляции, отностительное лин отклонение, коэфф.вариации.

Отношение размаха вариации к средней арифметической в процентах называется

коэффициентом осцилляции:

Vr= *100%

Относительное линейное отклонение- это отношение среднего линейного отклонение к средней арифместической:

С помощью относит. линейного отклонения можно сравнивать вариацию разных совокупностей, потому что в отличие от среднего линейного отклонения его значение не зависит от единиц измерения X.

Самым распространенным относительным показателем колеблемости признака

является коэффициент вариации.

Он более точно, чем абсолютный, характеризует различие колеблемости признаков.

По величине коэффициента вариации можно судить о степени вариации признаков

совокупности. Чем больше его величина, тем больше разброс значений вокруг

средней, тем менее однородна совокупность по своему составу и тем менее

представительна средняя.

Коэффициент вариации важен в тех случаях, когда нужно сравнивать средние

квадратические отклонения, выраженные в разных единицах измерения.

Критериальным значением квадратического коэффициента вариации V служит 0,333 или 33,3%, то есть если V меньше или равен 0,333 - вариация считает слабой, а если больше 0,333 - сильной. В случае сильной вариации изучаемая статистическая совокупность считается неоднородной, а средняя величина - нетипичной и ее нельзя использовать как обобщающий показатель этой совокупности.