
- •Предмет и метод статистики.
- •Этапы статистического исследования
- •Организационные формы статистического исследования
- •Виды статистического наблюдения.
- •Программа и организационный план статистического наблюдения.
- •Задачи и виды группировок. Уметь приводить примеры по каждому виду группировок.
- •Ряды распределения: определение, элементы, виды. Построение рядов распределения.
- •Виды статистических таблиц. Уметь приводить примеры.
- •Абсолютные величины.
- •Относительные величины, их виды. Уметь приводить примеры.
- •Виды средних величин. Уметь приводить примеры.
- •Свойства средней арифметической. Способы ее исчисления.
- •Структурные средние, методика их исчисления в дискретных и интервальных рядах распределения.
- •Абсолютные показатели вариации. Их значение в статистическом анализе.
- •Размах вариации – это разность между максимальным и минимальным значениями X из имеющихся в изучаемой статистической совокупности:
- •Cреднее квадратическое отклонение применяется для оценки вариации путем расчета среднего квадратического отклонения, обозначаемое малой греческой буквой сигма:
- •Относительные показатели вариации. Их значение в статистическом анализе.
- •Относительное линейное отклонение- это отношение среднего линейного отклонение к средней арифместической:
- •Виды дисперсии. Правило сложения дисперсий. Свойства дисперсии
- •Правило сложения дисперсии
- •Использование метода группировок для изучения взаимосвязи между социально-экономическими явлениями. Эмпирическое корреляционное отношение.
- •Задачи выборочного наблюдения. Особенность выборки как метода несплошного наблюдения.
- •Виды и способы отбора единиц наблюдения.
- •Виды ошибок выборки.
- •Определение предельной ошибки выборки. Определение необходимой численности выборки.
- •Задачи, решаемые с помощью корреляционно-регрессионного анализа.
- •Определение параметров уравнения регрессии.
- •Анализ зависимости между двумя альтернативными признаками.
- •Виды рядов динамики. Уметь приводить примеры.
- •Исчисление среднего уровня в различных видах рядов динамики.
- •Показатели изменения уровней ряда динамики (абсолютные прироста, темпы роста и прироста, абсолютное значение одного процента прироста).
- •Методы выравнивания рядов динамики.
- •Методы прогнозирования на основе анализа рядов динамики (на основе среднего абсолютного прироста, среднего темпа роста, аналитического выравнивания).
- •Индексы сезонности.
- •Статистика численности и состава населения. Источники информации о населении. Постоянное и наличное население. Показатели демографической нагрузки.
- •Понятие естественного и миграционного движения населения. Система показателей естественного и миграционного движения населения. Методы расчета перспективной численности населения.
- •Показатели численности и состава персонала организации. Методы исчисления средней численности персонала организации. Показатели движения персонала организации.
- •Состав рабочего времени. Балансы рабочего времени. Показатели использования рабочего времени.
- •Показатели использования раб. Времени
- •Показатели уровня производительности труда, взаимосвязь между ними.
- •Показатели динамики производительности труда. Определение прироста продукции за счет изменения уровня производительности труда.
- •Статистические методы изучения влияния факторов на изменение производительности труда и объема продукции.
- •Метод цепных подстановок
- •Корреляционный анализ
- •Задачи статистики оплаты труда. Фонд заработной платы, его состав. Показатели среднего уровня оплаты труда, взаимосвязь между ними.
- •Показатели динамики среднего уровня оплаты труда. Статистические методы анализа дифференциации работающих по уровню оплаты труда.
- •Понятие национального богатства. Классификация экономических активов в снс. Баланс экономических активов и пассивов.
- •Понятие и состав основных фондов. Виды стоимостной оценки основных фондов. Балансы основных фондов. Показатели состояния, движения и использования основных фондов.
- •Коэффициент годности основных фондов на начало года:
- •Статистическое изучение динамики фондоотдачи и фондоемкости продукции. Определение прироста продукции за счет улучшения использования основных фондов.
- •Статистическое изучение оборудования как активной части основных фондов. Показатели, характеризующие использование оборудования по численности, времени, мощности и объему работы.
- •Материальные оборотные средства как элемент национального богатства. Состав материальных оборотных средств. Статистическое изучение использования материальных оборотных средств
- •Показатели статистики рынка товаров и услуг. Товарооборот, статистическое изучение его объема и динамики. Товарные запасы. Скорость товарного обращения. Обеспеченность товарными запасами.
- •Понятие и состав издержек производства. Группировки издержек производства (по экономическим элементам, по назначению, по отношению к технологическому процессу производства и др.).
- •Статистическое изучение уровня и динамики себестоимости продукции (общие индексы себестоимости продукции, показатели экономии затрат).
- •Статистическое изучение уровня и динамики затрат на рубль продукции.
- •Понятие издержек обращения. Статистические показатели уровня и динамики издержек обращения.
- •Рентабельность продукции как показатель эффективности производства. Статистический анализ влияния цен, себестоимости и структуры продукции на изменение рентабельности продукции.
- •Ввп. Методы исчисления ввп: производственный, распределительный, метод конечного использования. Внд.
- •Методология построения и статистического анализа счета производства, счета образования доходов, счета распределения первичных доходов, счета товаров и услуг.
- •Определение ввп на основе показателей счета производства и счета товаров и услуг.
- •Показатели уровня жизни населения (понятие «уровень жизни населения», система показателей уровня жизни населения, методология построения индекса развития человеческого потенциала).
- •Интегральные показатели уровня жизни.
- •Показатели личных доходов населения.
- •Показатели расходов и потребления населения.
- •Показатели дифференциации населения по уровню жизни.
Абсолютные показатели вариации. Их значение в статистическом анализе.
Исследование вариации в статистике имеет важное значение, т.к. дает возможность оценить степень воздействия на данный признак других варьирующих признаков. Определение вариации необходимо при организации выборочного наблюдения, построения статистических моделей, разработке материалов экспертных опросов и т.д.
Вариация - это различие значений величин X у отдельных единиц статистической совокупности. Для изучения силы вариации рассчитывают следующие показатели вариации: размах вариации, среднее линейное отклонение,линейный коэффициент вариации, дисперсия, среднее квадратическое отклонение, квадратический коэффициент вариации. К абсолютным показат вар относят: размах вариции, ср. лин. Отклонение дисперсия, среднее квадр отклонение.
Размах вариации – это разность между максимальным и минимальным значениями X из имеющихся в изучаемой статистической совокупности:
Недостатком показателя H является то, что он показывает только максимальное различие значений X и не может измерять силу вариации во всей совокупности.
Cреднее линейное отклонение - это средний модуль отклонений значений X от среднего арифметического значения. Его можно рассчитывать по формуле средней арифметической простой - получим среднее линейное отклонение простое:
Если исходные данные X сгруппированы (имеются частоты f), то расчет среднего линейного отклонения выполняется по формуле средней арифметической взвешенной - получим среднее линейное отклонение взвешенное:
Дисперсия - это средний квадрат отклонений значений X от среднего арифместического значения. Дисперсию можно рассчитывать по формуле средней арифметической простой - получим дисперсию простую:
Если исходные данные X сгруппированы (имеются частоты f), то расчет дисперсии выполняется по формуле средней арифметической взвешенной - получим дисперисю взвешенную:
Если преобразовать формулу дисперсии (раскрыть скобки в числителе, почленно разделить на знаменатель и привести подобные), то можно получить еще одну формулу для ее расчета как разность средней квадратов и квадрата средней:
Если значения X - это доли совокупности, то для расчета дисперсии используют частную формулу дисперсии доли:
.
Cреднее квадратическое отклонение применяется для оценки вариации путем расчета среднего квадратического отклонения, обозначаемое малой греческой буквой сигма:
Еще проще можно найти среднее
квадратическое отклонение, если
предварительно рассчитана дисперсия,
как корень квадратный из нее
Относительные показатели вариации. Их значение в статистическом анализе.
К относительным показателям вариации относят: коэфф. осцилляции, отностительное лин отклонение, коэфф.вариации.
Отношение размаха вариации к средней арифметической в процентах называется
коэффициентом осцилляции:
Vr=
*100%
Относительное линейное отклонение- это отношение среднего линейного отклонение к средней арифместической:
С помощью относит. линейного отклонения можно сравнивать вариацию разных совокупностей, потому что в отличие от среднего линейного отклонения его значение не зависит от единиц измерения X.
Самым распространенным относительным показателем колеблемости признака
является коэффициент вариации.
Он более точно, чем абсолютный, характеризует различие колеблемости признаков.
По величине коэффициента вариации можно судить о степени вариации признаков
совокупности. Чем больше его величина, тем больше разброс значений вокруг
средней, тем менее однородна совокупность по своему составу и тем менее
представительна средняя.
Коэффициент вариации важен в тех случаях, когда нужно сравнивать средние
квадратические отклонения, выраженные в разных единицах измерения.
Критериальным значением квадратического коэффициента вариации V служит 0,333 или 33,3%, то есть если V меньше или равен 0,333 - вариация считает слабой, а если больше 0,333 - сильной. В случае сильной вариации изучаемая статистическая совокупность считается неоднородной, а средняя величина - нетипичной и ее нельзя использовать как обобщающий показатель этой совокупности.