- •1.Основные понятия коллоидной химии; классификация, основные особенности, количественные характеристики дисперсных систем.
- •2. Диспергационные методы получения дисперсных систем
- •3. Конденсационные методы получения дисперсных систем
- •4. Закон Эйнштейна-Смолуховского, броуновское движение.
- •5. Первый и второй законы Фика, диффузия, движущая сила диффузии, связь коэффициента диффузии с размерами частиц
- •6. Гипсометрический закон Лапласа, диффузионно-седиментационное равновесие. Кривая седиментации для монодисперсных и полидисперсных систем.
- •7. Строение двойного электрического слоя (фи-потенциал и дзета-потенциал), теория Квинке-Гельмгольца-Перрена, теория Гуи-Чепмена, теория Штерна, строение мицеллы.
- •8. Рассеяние света. Опалесценция. Эффект Тиндаля.
- •9. Закон Бугера-Ламберта-Бера, оптические свойства коллоидных растворов, оптические методы анализа дисперсности.
- •10. Работа когезии. Связь поверхностной энергии с взаимодействиями между молекулами (атомами, ионами), правило Трутона, уравнение Дюпре. .
- •12. Закон Лапласа: общая форма, частные случаи, капиллярное поднятие жидкости, уравнение Жюрена.
- •13. Томсона (Кельвина), зависимость давления насыщенного пара от кривизны поверхности жидкости, капиллярная конденсация.
- •14. Закон Гиббса-Оствальда-Фрейндлиха, влияние дисперсности на растворимость твердых частиц, процессы изотермической перегонки в дисперсных системах.
- •15. Лиофильные коллоидные системы, методы получения. Самопроизвольное диспергирование макрофаз: критерий самопроизвольного диспергирования (по Ребиндеру-Щукину, примеры).
- •16. Мицеллообразование в водных растворах пав. Критическая концентрация мицеллообразования (ккм), основные методы определения ккм
- •17. Солюбилизация
- •18. Термодинамика мицеллообразования, диаграмма фазовых состояний, точка Крафта, жидкокристаллические системы.
- •19. Образование и строение обратных мицелл
- •20. Аэрозоли. Молекулярно-кинетические свойства. Седиментация
- •21. Термопреципитация
- •22. Фотофорез
- •23. Термофорез.
- •24. Коалесценция.
- •25. Быстрая и медленная коагуляция.
- •26. Концентрационная и нейтрализационная коагуляция
- •27. Изотермическая перегонка.
- •28. Пены, классификация и строение, разрушение пен и практическое применение.
- •29. Эффект Марангони.
- •30. Тиксотропия.
- •31. Флотация.
- •32. Эмульсии. Обращение фаз, разрушение эмульсий и практическое применение.
- •33. Правило Банкрофта
- •34. Правило Дюкло-Траубе
- •35. Правило Шульца-Гарди.
- •36.Критерий Эйлера-Корфа.
- •37. Теория длфо.
- •38. Слои Шиллера
- •39. Тактоиды
- •40. Биконтинуальные дисперсные системы
- •41. Кольца и слои Лизеганга
- •42. Пептизация.
- •43. Флокуляция
- •44. Гетерокоагуляция.
- •45. Адагуляция.
- •46. Аддитивность коагуляции.
- •47. Антагонизм коагуляции
- •48. Синергизм коагуляции
- •49. Коагуляционные структуры
- •50. Структуры с фазовыми контактами
- •51. Синерезис.
- •52. Конденсационные структуры
- •53. Кристаллизационные структуры
- •54. Когезия.
- •55. Адгезия
- •56. Физико-химические методы регулирования структурно-механических свойств дисперсных систем.
- •57. Смачивание.
- •58. Капиллярное давление
- •59. Закон Ньютона (трение)
- •60. Диссипация энергии
- •61. Застудневание
- •62.Ползучесть
- •63. Вязкость коллоидных растворов. Зависимость вязкости раствора от концентрации взвешенных частиц (уравнение Эйнштейна)
- •64.Аномалия вязкости коллоидных систем. Причины, которые вызывают аномалии вязкости
- •65. Как образуется снежинка
- •66. Хемосорбция и каталитическая сорбция, сходства и отличия, привести примеры
- •67. Почему “химические дожди” выпадают недалеко от источника загрязнения?
- •68. Адсорбция
- •69. Абсорция.
- •70. Хемосорбция.
- •71. Каталитическая сорбция
- •72. Обеспечивает вертикальную устойчивость облаков?
- •73. В чём сходство и различие газовой и жидкой дисперсионных сред?
- •74. Почему туман в вечернее время распространяется в приземном слое, не оседая на поверхность?
- •75. Почему снег выпадает иногда в виде “крупы”?
- •76. Почему иней в большей степени образуется на открытых участках, чем в лесу?
- •77. Адсорбция и адагуляция, сходства и отличия, привести примеры
- •78. Количественные характеристики дисперсных систем
- •78. Количественные характеристики дисперсных систем.
- •79. Классификация дисперсных систем по размеру частиц дисперсной фазы ( отличительные особенности частиц разных размеров)
- •80. Классификация дисперсных систем по фракционному составу частиц.
- •81. Классификация дисперсных систем по концентрации частиц.
- •82. Классификация дисперсных систем по характеру взаимодействий дисперсной фазы с дисперсной средой.
- •83. Классификация дисперсных систем по характеру распределения фаз.
- •84. Классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсной среды.
- •85. Классификация дисперсных частиц по размерам.
- •86. Классификация дисперсных частиц по форме
- •87. Классификация дисперсных частиц по строению.
- •88. Классификация дисперсных частиц по химическому составу.
- •89. Размерные эффекты, наблюдаемые в дисперсных системах.
- •90. Термодинамические свойства дисперсных частиц.
- •91. Механические свойства дисперсных частиц.
- •92. Магнитные свойства дисперсных частиц.
- •93. Каталитические свойства дисперсных частиц.
- •94. Энергетическое и силовое определение поверхностного натяжения.
- •95. Факторы, влияющие на поверхностное натяжение жидкостей.
- •96. Дисперсионная и полярная составляющая поверхностного натяжения жидкостей.
- •97. Метод избыточных величин Гиббса.
- •98. Капиллярное давление (определение, физический смысл, от чего зависит)
- •99. Несмачивание, полное смачивание, гидрофильность и гидрофобность.
- •100. Правило Антонова.
- •101. Эффект Марангони
- •102. Зависимость смачиваемости от свойств твердой поверхности
- •103. Смачивание нанокаплями
- •104. Адгезия, когезия, уравнение Дюпре.
- •105. Изотермическая перегонка
- •106. Перекристаллизация
- •107. Капиллярная конденсация
- •108. Закон Жюрена. (высота подъема жидкости в капиллярных трубках)
- •109. Измерение поверхностного натяжения методом капиллярного подъема.
- •110. Измерение поверхностного натяжения методом сидящей капли.
- •111. Измерение поверхностного натяжения методом максимального давления.
- •112.Измерение поверхностного натяжения методом пластинки Вильгельми.
- •113. Измерение поверхностного натяжения методом вращающейся капли.
- •114. Измерение поверхностной энергии твердых тел
- •115. Адсорбция пав на поверхности раздела жидких фаз.
- •116. Адсорбция пав из растворов на поверхности твердых тел.
- •117. Химическое модифицирование твердых тел.
- •118. Классификация пав по растворимости.
- •119. Классификация пав по диссоциации в воде.
- •120. Классификация пав по происхождению и по способности к образованию мицелл.
- •121. Классификация пав по физико-химическому воздействию на поверхность раздела между фазами.
- •122. Гидрофильно-липофильный баланс.
- •123. Критический параметр упаковки
- •125. Строение дэс
- •126. Влияние электролитов на дэс.
- •127. Электрофорез.
- •128. Электроосмос.
- •129. Потенциал течения.
- •130. Потенциал оседания.
- •131. Электрокапиллярные явления. (Электрокапилярная кривая, уравнение Липпмана)
3. Конденсационные методы получения дисперсных систем
Физические конденсационные мтды. Основной принцип получения дисперсных частиц новой фазы из пара (при конденсации) или из жидкости (при кристаллизации).
Методы молекулярных пучков. Исходные вещества помещают в вакуумную камеру с узким выходным отверстием (диафрагмой), после нагревания до достаточно высокой температуры, вещество испаряется. Проходя через диафрагму испарившиеся частицы образуют молекулярный пучок. Его направляют на подложку, на поверхности которой происходит конденсация пара с образовании ем дисперсных частиц или тонкого покрытия (примерно 10нм).
Аэрозольный метод. Ме испаряются в разряженной атмосфере инертного газа при понижении Т пары конденсируются и образуются дисп-е металлические частицы от 1-3 до 100 нм.
Распылительная сушка. На 1-ой стадии раствор дланного в-ва (NaCl) диспергируют на мелкие капли потоки нагретого газа (воздуха). При умеренных температурах газа происходит испарение растворителя и продуктом процесса является порошок из дисп-х частиц соли. При достаточно высоких Т-х наряду с испарением р-ля может произойти термическое разложение соли и исходным продуктом будет оксидный порошок.
Криохимический синтез. Основная особенность этого мтда заключается в том, что сначала Ме испаряют в потоке инертного газа (Ar или ксенон) при интенсивном нагреве, катодном распылении с помощью электроразрыва или другим способом. Далее идет конденсация паров металла на поверхности подложки (субстрата) при низких Т или сверхнизких Т в большом избытке (в 1000чи раз) и инертного газа. В рез-те на подложке образуется наночастица. Оч. Низкие Тры в сочетании с сильным разбавлением препятствует диффузии наночастиц.
Плазменный метод. В инертной атмосфере (или с некоторой примесью Н2) создают электрическую (вольтову) дугу. Анод – испаряемый материал. Через анод идет струя пара, в которой создается Т до 7000К. За пределами дуги Т ниже, в рез-те чего происходит очень высокое пересыщение металлического пара, что приводит к его конденсации в виде наночастиц.
4. Закон Эйнштейна-Смолуховского, броуновское движение.
Броуновское движение – хаотическое, непрерывное движение частиц д.ф. незатухающее во времени. Броуновское движение дисп частиц является следствием огромного количества беспорядочных ударов со стороны молекул д.с. Каждая частица д.ф. испытывает примерно 10^20 в сек разнонаправленных ударов, различной энергии, со стороны д.с. Количественной оценкой броуновского движения является среднеквадратичный сдвиг. Определяется среднеквадратичное смещение, как правило, оптическим методом при наблюдении за отдельными, наиболее крупными частицами в объектив ультрамикроскопа. Чаще всего среднеквадратичное смещение определяют на основании коэффициента диффузии по формуле Эйнштейна – Смолуховского: Δ^2=2Dτ;
D- коэффициент диффузии; τ – время смещения дисперсной частицы.
1.Броуновского движение ограничивает точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха.
2. Законами Броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.
