- •1.Основные понятия коллоидной химии; классификация, основные особенности, количественные характеристики дисперсных систем.
- •2. Диспергационные методы получения дисперсных систем
- •3. Конденсационные методы получения дисперсных систем
- •4. Закон Эйнштейна-Смолуховского, броуновское движение.
- •5. Первый и второй законы Фика, диффузия, движущая сила диффузии, связь коэффициента диффузии с размерами частиц
- •6. Гипсометрический закон Лапласа, диффузионно-седиментационное равновесие. Кривая седиментации для монодисперсных и полидисперсных систем.
- •7. Строение двойного электрического слоя (фи-потенциал и дзета-потенциал), теория Квинке-Гельмгольца-Перрена, теория Гуи-Чепмена, теория Штерна, строение мицеллы.
- •8. Рассеяние света. Опалесценция. Эффект Тиндаля.
- •9. Закон Бугера-Ламберта-Бера, оптические свойства коллоидных растворов, оптические методы анализа дисперсности.
- •10. Работа когезии. Связь поверхностной энергии с взаимодействиями между молекулами (атомами, ионами), правило Трутона, уравнение Дюпре. .
- •12. Закон Лапласа: общая форма, частные случаи, капиллярное поднятие жидкости, уравнение Жюрена.
- •13. Томсона (Кельвина), зависимость давления насыщенного пара от кривизны поверхности жидкости, капиллярная конденсация.
- •14. Закон Гиббса-Оствальда-Фрейндлиха, влияние дисперсности на растворимость твердых частиц, процессы изотермической перегонки в дисперсных системах.
- •15. Лиофильные коллоидные системы, методы получения. Самопроизвольное диспергирование макрофаз: критерий самопроизвольного диспергирования (по Ребиндеру-Щукину, примеры).
- •16. Мицеллообразование в водных растворах пав. Критическая концентрация мицеллообразования (ккм), основные методы определения ккм
- •17. Солюбилизация
- •18. Термодинамика мицеллообразования, диаграмма фазовых состояний, точка Крафта, жидкокристаллические системы.
- •19. Образование и строение обратных мицелл
- •20. Аэрозоли. Молекулярно-кинетические свойства. Седиментация
- •21. Термопреципитация
- •22. Фотофорез
- •23. Термофорез.
- •24. Коалесценция.
- •25. Быстрая и медленная коагуляция.
- •26. Концентрационная и нейтрализационная коагуляция
- •27. Изотермическая перегонка.
- •28. Пены, классификация и строение, разрушение пен и практическое применение.
- •29. Эффект Марангони.
- •30. Тиксотропия.
- •31. Флотация.
- •32. Эмульсии. Обращение фаз, разрушение эмульсий и практическое применение.
- •33. Правило Банкрофта
- •34. Правило Дюкло-Траубе
- •35. Правило Шульца-Гарди.
- •36.Критерий Эйлера-Корфа.
- •37. Теория длфо.
- •38. Слои Шиллера
- •39. Тактоиды
- •40. Биконтинуальные дисперсные системы
- •41. Кольца и слои Лизеганга
- •42. Пептизация.
- •43. Флокуляция
- •44. Гетерокоагуляция.
- •45. Адагуляция.
- •46. Аддитивность коагуляции.
- •47. Антагонизм коагуляции
- •48. Синергизм коагуляции
- •49. Коагуляционные структуры
- •50. Структуры с фазовыми контактами
- •51. Синерезис.
- •52. Конденсационные структуры
- •53. Кристаллизационные структуры
- •54. Когезия.
- •55. Адгезия
- •56. Физико-химические методы регулирования структурно-механических свойств дисперсных систем.
- •57. Смачивание.
- •58. Капиллярное давление
- •59. Закон Ньютона (трение)
- •60. Диссипация энергии
- •61. Застудневание
- •62.Ползучесть
- •63. Вязкость коллоидных растворов. Зависимость вязкости раствора от концентрации взвешенных частиц (уравнение Эйнштейна)
- •64.Аномалия вязкости коллоидных систем. Причины, которые вызывают аномалии вязкости
- •65. Как образуется снежинка
- •66. Хемосорбция и каталитическая сорбция, сходства и отличия, привести примеры
- •67. Почему “химические дожди” выпадают недалеко от источника загрязнения?
- •68. Адсорбция
- •69. Абсорция.
- •70. Хемосорбция.
- •71. Каталитическая сорбция
- •72. Обеспечивает вертикальную устойчивость облаков?
- •73. В чём сходство и различие газовой и жидкой дисперсионных сред?
- •74. Почему туман в вечернее время распространяется в приземном слое, не оседая на поверхность?
- •75. Почему снег выпадает иногда в виде “крупы”?
- •76. Почему иней в большей степени образуется на открытых участках, чем в лесу?
- •77. Адсорбция и адагуляция, сходства и отличия, привести примеры
- •78. Количественные характеристики дисперсных систем
- •78. Количественные характеристики дисперсных систем.
- •79. Классификация дисперсных систем по размеру частиц дисперсной фазы ( отличительные особенности частиц разных размеров)
- •80. Классификация дисперсных систем по фракционному составу частиц.
- •81. Классификация дисперсных систем по концентрации частиц.
- •82. Классификация дисперсных систем по характеру взаимодействий дисперсной фазы с дисперсной средой.
- •83. Классификация дисперсных систем по характеру распределения фаз.
- •84. Классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсной среды.
- •85. Классификация дисперсных частиц по размерам.
- •86. Классификация дисперсных частиц по форме
- •87. Классификация дисперсных частиц по строению.
- •88. Классификация дисперсных частиц по химическому составу.
- •89. Размерные эффекты, наблюдаемые в дисперсных системах.
- •90. Термодинамические свойства дисперсных частиц.
- •91. Механические свойства дисперсных частиц.
- •92. Магнитные свойства дисперсных частиц.
- •93. Каталитические свойства дисперсных частиц.
- •94. Энергетическое и силовое определение поверхностного натяжения.
- •95. Факторы, влияющие на поверхностное натяжение жидкостей.
- •96. Дисперсионная и полярная составляющая поверхностного натяжения жидкостей.
- •97. Метод избыточных величин Гиббса.
- •98. Капиллярное давление (определение, физический смысл, от чего зависит)
- •99. Несмачивание, полное смачивание, гидрофильность и гидрофобность.
- •100. Правило Антонова.
- •101. Эффект Марангони
- •102. Зависимость смачиваемости от свойств твердой поверхности
- •103. Смачивание нанокаплями
- •104. Адгезия, когезия, уравнение Дюпре.
- •105. Изотермическая перегонка
- •106. Перекристаллизация
- •107. Капиллярная конденсация
- •108. Закон Жюрена. (высота подъема жидкости в капиллярных трубках)
- •109. Измерение поверхностного натяжения методом капиллярного подъема.
- •110. Измерение поверхностного натяжения методом сидящей капли.
- •111. Измерение поверхностного натяжения методом максимального давления.
- •112.Измерение поверхностного натяжения методом пластинки Вильгельми.
- •113. Измерение поверхностного натяжения методом вращающейся капли.
- •114. Измерение поверхностной энергии твердых тел
- •115. Адсорбция пав на поверхности раздела жидких фаз.
- •116. Адсорбция пав из растворов на поверхности твердых тел.
- •117. Химическое модифицирование твердых тел.
- •118. Классификация пав по растворимости.
- •119. Классификация пав по диссоциации в воде.
- •120. Классификация пав по происхождению и по способности к образованию мицелл.
- •121. Классификация пав по физико-химическому воздействию на поверхность раздела между фазами.
- •122. Гидрофильно-липофильный баланс.
- •123. Критический параметр упаковки
- •125. Строение дэс
- •126. Влияние электролитов на дэс.
- •127. Электрофорез.
- •128. Электроосмос.
- •129. Потенциал течения.
- •130. Потенциал оседания.
- •131. Электрокапиллярные явления. (Электрокапилярная кривая, уравнение Липпмана)
29. Эффект Марангони.
Эффект Марангони — явление переноса вещества вдоль границы раздела двух сред, возникающее вследствие наличия градиента поверхностного натяжения. Такая разновидность конвекции называется капиллярной или конвекцией Марангони.
Возникновение градиента поверхностного натяжения может быть вызвано градиентом концентрации или градиентом температуры. В последнем случае помимо эффекта Марангони имеет место эффект Бенара и такая конвекция называется термокапилляной (конвекция Бенара — Марангони). Чем больше у жидкости поверхностное натяжение, тем с большей силой она стягивается. Поэтому при наличии градиента поверхностного натяжения жидкость будет перемещаться в область с большим коэффициентом поверхностного натяжения. Однако, в большинстве случаев эффект Марангони незначителен, поскольку обычно он перекрывается конвекцией жидкости под действием силы тяжести вдоль градиента плотности.
Наиболее известное проявление эффекта Марангони — «слёзы вина», является следствием того, что этанол имеет более низкое, чем у воды, поверхностное натяжение. Если спирт смешивается с водой неоднородно, область с меньшей концентрацией алкоголя будет иметь больший коэффициент поверхностного натяжения и стягивает окружающую жидкость сильнее, чем область с более высокой концентрацией спирта. В результате такая смесь имеет тенденцию перетекать в области, где концентрация алкоголя меньше. Такой областью является мениск у стенки бокала, где испарение наиболее интенсивно.
30. Тиксотропия.
Тиксотропия - способность некоторых структурированных дисперсных систем самопроизвольно восстанавливать разрушенную механическим воздействием исходную структуру.
Тиксотропия проявляется в разжижении при достаточно интенсивном встряхивании или перемешивании гелей, паст, суспензий и других систем с коагуляционной дисперсной структурой и их загущении (отвердевании) после прекращения механического воздействия. Тиксотропное восстановление структуры — механически обратимый изотермический процесс, который может быть воспроизведён многократно. В более широком смысле тиксотропия — временное понижение эффективной вязкости вязко-текучей или пластичной системы в результате её деформирования независимо от физической природы происходящих в ней изменений.
Тиксотропия имеет важное практическое значение. Тиксотропные материалы используют в технологии силикатов, пластических масс, пищевых продуктов. Тиксотропными свойствами обладают некоторые водоносные грунты (плывуны), биологические структуры, различные технические материалы (промывочные глинистые растворы, применяемые при бурении нефтяных скважин, краски, смазки и др.).
Примерами типичных тиксотропных структур могут служить системы, образующиеся при коагуляции водных коллоидных дисперсий гидроокиси железа, гидроокиси алюминия, пятиокиси ванадия, суспензий бентонита, каолина.
31. Флотация.
Флотация – метод обогащения полезных ископаемых. В основе этого метода лежит использование различий в смачивании разделяемых частиц водой.
Флотационное обогащение руд полезных ископаемых основано на том, что сернистые соединения, в виде которых металлы обычно находятся в руде, обладают большей гидрофобностью, чем пустая порода, например кварц. В настоящее время широкое применение получила так называемая пенная флотация. Она заключается в том, что в суспензию минерала (флотационную пульпу) тем или иным способом вводят пузырьки воздуха. При всплывании пузырьки собирают на своей поверхности те частицы руды, на которых вода образует больший краевой угол (более гидрофобные). В результате на поверхности пульпы образуется минерализованная пена, которую отделяют и после ее разрушения образуется концентрат руды. Хорошо смачиваемые водой частицы пустой породы не прилипают к пузырькам, оседают на дно и образуют отходы флотации.
Флотация – один из основных методов обогащения полезных ископаемых. Применяется также для очистки воды от органических веществ и твёрдых взвесей, разделения смесей, ускорения отстаивания в химической, нефтеперерабатывающей, пищевой и других отраслях промышленности.
