- •1.Принципиальная основа выделения царств Прокариот и Эукариот.
- •2. Специфические особенности прокариот.
- •3. Роль прокариот в природе и жизни человека.
- •4. Морфологические типы, размеры и особенности размножения бактерий.
- •5. Клеточная стенка бактерий, ее строение и функции.
- •6. Цитоплазматическая мембрана, функции.
- •7. Цитоплазма. Цитоплазматические включения: ограниченные и неограниченные внутренней мембраной.
- •8. Нуклеоид. Плазмиды бактерий, типы и их функции. Пути генетической изменчивости.
- •9.Капсула, её значение.
- •10. Жгутики. Движение бактерий.
- •11. Фимбрии.
- •12. Спорообразование у бактерий, его типы и биологический смысл.
- •13. Рост бактериальной популяции. Фазы роста.
- •14.Химический состав бактериальной клетки. Химический состав питательного субстрата прокариот. Понятия ауксотрофности и прототрофности, олиготрофности и копиотрофности.
- •15. Питательные среды, методы стерилизации
- •16.Пути поступления питательных веществ в бактериальную клетку.
- •17.Особенности бактериального фотосинтеза.
- •18. Фотолитоавтотрофы.
- •19. Фотоорганогетеротрофы.
- •Хемолитоавтотрофный тип питания прокариот
- •Хемоорганогетеротрофы
- •Ферменты цепи электронного транспорта.
- •Эволюция типов дыхания прокариот. Критерии выхода на аэробную жизнь. Пути эволюции аэробов.
- •24. Брожение и его типы. Три пути гликолиза.
- •25 Молочнокислое брожение. Микрофлора молока и кисломолочных продуктов.
- •26. Спиртовое брожение. Химизм. Значение в народном хозяйстве.
- •27. Типичное маслянокислое брожение.
- •32. Открытие домена Археи. Характеристика их групп. Современный взгляд на единое филогенетическое древо организмов.
- •37 Типы взаимодействия микроорганизмов друг с другом
- •38. Взаимодействие бактерий и растений. Типы микробо-растительных ассоциаций.
- •39. Взаимодействие бактерий и животных.
- •40. Микрофлора организма человека.
- •41. Микрофлора атмосферы и воздуха помещений.
- •42. Микрофлора открытых водоемов и питьевой воды. Зоны сапробности. Системы очистки. Санитарный контроль.
- •43. Микрофлора почвы. Динамика численности и закономерности распределения микроорганизмов в почве.
- •44. Роль прокариот в процессах трансформации азотсодержащих веществ.
- •45. Аэробная и анаэробная аммонификация белка. Аммонификация мочевины.
- •46. Нитрификация и ее биологический смысл.
- •47. Денитрификация и ее оценка для круговорота азота и земледелия.
- •48. Характеристика свободноживущих, симбиотических и ассоциативных азотфиксаторов. Роль биологического азота в продуктивности экосистем.
- •49. Симбиотические азотфиксаторы. Цикл развития. Взаимоотношения с растениями.
- •50. Химизм биологической азотфиксации.
- •51. Азотная автотрофия. Типы диазотрофов. Основные бактериальные препараты на основе азотфиксирующих штаммов бактерий.
- •52. Анаэробное и аэробное разложение клетчатки. Роль прокариот в процессе круговорота углерода.
- •53.Характеристика риккетсий как связующего звена прокариот и вирусов. Актиномицеты как связующее звено бактерий и низших грибов. Микоплазмы как связующее звено прокариот и эукариот.
- •54. Взаимоотношения грибов с растениями. Микориза и ее типы.
- •55. Вирусы. Отличие вирусов от про- и эукариот.
- •56. Строение вириона на примере вирусов гриппа, втм, вич, геппатита в и др.
- •57. Капсид вирусов и его функции. Суперкапсид вирусов и его функции.
- •58. Нуклеиновые кислоты вирусов.
- •59. Пути хемосорбции вирусов. Вирусные рецепторы и ферменты.
- •60. Цикл репродукции рнк-геномных вирусов.
- •61. Цикл репродукции днк-геномных вирусов.
- •62. Вирусный канцерогенез. Ретровирусы.
- •63. Вирусные инфекции. Профилактика и лечение.
- •64. Вироиды и прионы.
51. Азотная автотрофия. Типы диазотрофов. Основные бактериальные препараты на основе азотфиксирующих штаммов бактерий.
Все живые организмы подразделяются на азотных гетеротрофов и азотных автотрофов. Первые получают связанный азот в составе органических веществ или простых минеральных ионов –аммония (NH4)и нитрата (NO3). Вторые обладают способностью самостоятельно превращать молекулярный азот в аммоний, а затем путем аминирования внедрять его в скелет органических молекул. Прокариотные организмы, которые осуществляют диазотрофию, называются диазотрофами.
Диазотрофы обеспечивают самих себя связанным азотом, а также обогащают им окружающий экоценоз. Это происходит либо путем использования их мортмассы другими живыми организмами, либо благодаря экспорту аммиака или аминокислот.
Благодаря диазотрофам инертный азот, поступающий в атмосферу при дыхательной денитрификации, возвращается в биологический круговорот.
Препараты: агрофил (Agrobacterium radiobacter, штамм 10), азоризин (Azospirillum lipoferum, штамм 137), бактосан (Bacillus subtilis, Ч-13), мизорин (Arthrobacter mysorens, штамм 7), мобилин (Klebsiella mobilis, штамм П 880), ризоаргин (Agrobacterium radiobacter, штамм 204), флавобактерин (Flavobacterium sp., штамм Л 30), псевдомонас (Pseudomonas fluorescens, П 1040), алкалигенс (Alcaligenes xylosoxidans).
52. Анаэробное и аэробное разложение клетчатки. Роль прокариот в процессе круговорота углерода.
Анаэробное разложение клетчатки. Огромное значение для круговорота углерода в природе имеет разложение клетчатки (целлюлозы). Половина всего углерода, находящегося на поверхности Земли, содержится в клетчатке. Клетчатка и лигнин совсем не усваиваются животными. А ежегодный прирост ее в составе растений огромный. Она составляет 50% сухого веса прироста, поэтому накапливалась бы в больших количествах на Земле, нарушая круговорот углерода. Клетчатка - очень стойкое органическое соединение и может быть разрушена только при действии очень сильных химических соединений. Но в природе она легко разрушается и вовлекается в круговорот веществ под воздействием широко распространенных целлюлозоразлагающих микробов, впервые описанных В. Л. Омелянским в 1899 г. Он установил, что анаэробное разложение клетчатки вызывают Вас. cellulosae hydrogenicus и Вас. cellulosae methanicus. Обе эти палочки морфологически похожи друг на друга, анаэробы, образуют споры, содержат ферменты целлюлозу и целлобиазу. Конечные продукты обеих палочек - масляная и уксусная кислоты, углекислота, но первая палочка еще образует водород, а вторая метан. Некоторые авторы обе эти палочки относят к одному виду Вас. Omelianskii, полагая, что метан является вторичным продуктом водородного брожения клетчатки.
А. А. Имшенецким изучены термофильные клетчаткоразлагающие бактерии Gl. thermocellum. Они развиваются только в симбиозе с другими бактериями. Оптимальная температура для них 60-65°. Конечные продукты брожения - летучие кислоты, этиловый спирт и газы.
Кроме анаэробного разложения в природе широко распространено и аэробное разложение клетчатки. Возбудителями этого окисления являются микроорганизмы, повсеместно находящиеся в почве и в других местах наличия клетчатки. Сюда относятся изученные С. Н. Виноградским Cytophaga, которую Имшенецкий относит к целлюлозоразлагающим миксобактериям - Myxococcus, затем Cellvibrio и Cellfalcicula. Клетчатку разлагают также многие виды актиномицетов и грибков. Характер воздействия разных групп микробов одинаков: сначала они гидролизируют, а затем окисляют до углекислоты и воды. При внесении в почву удобрения с большим содержанием клетчатки значительно увеличивается фиксация атмосферного азота азотобактером и клостридиумом, так как образующиеся в промежуточных стадиях разложения растворимые сахара и органические кислоты улучшают питание этих бактерий.
Особенно значима в круговороте азота роль симбиогических бактерий родов азотобактер или ризобиум способны путем ферментативного расщепления молекул N2 фиксировать атмосферный азот и делать его доступным корневым системам растений.
Среди почвенных бактерий особую функцию выполняют нитрифицирующие ( азотфиксирующие ), играющие важнейшую роль в круговороте азота в природе. За год бактериями фиксируется 160-170 млн азота.
